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Prior to 1992, organizational maintenance was aligned

under a separnte maintenance organization. In 1992, the Air

Force restructured into Objective Wings with organizational

maintenance aligned under the flying squadrons. This study

looks at the impact of this reorqanizatLon on maintenance

performance factors.

The researchers developed maintenance performance

models using regression and pri.ncipal component analysis.

Mission Capable Rate and Total Not Mission Capable

Maintenance Rate are used as dependent variables. A

comparison of key maintenance performnance indicators and

mndel predictions before and after the reorganization is

accomplished.

Based on the results of this analysis, the researchers

conclude that there is significant improvement in all

dependent variables, uodel predictions of these dependent

variables and ixprovement in some of the independent

variables. Improvement occurred affter organizational

stru!cture changed, however, other factors not included in

the models such as the stand-down of the Alert Force may

also contribute to --his improvement.

ix



AN EVALUATION OF AIRCRAFT MAINTENANCE PERFORMANCE FACTOPS IN

THE OBJECTIVE WING

I. Introduction

Bc round

The United States Air Force (USAF) is operating in an

extremely dynamic ancA ever-changing world. We "are

absorbing change on a scale without precedent since the Air

Force became a separate service in 1947" (Correll, 1992:4).

Many events have occurred in the past few years that will

have dramatic and enduring effects on the Air Force and the

way we perform our mission. The Union of Soviet Socialist

Republics (USSR), our arch enemy for decades, has dissolved

into numerous independent states -- each striving for

democracy. Germany has been united, disbanding the

communist regime that has reigned in East Germany since the

end of World War II. Iraq has continuously been a "thorn in

the side" of the United States since its invasion of Kuwait

in the fall of 1990.

These changes in the world environment do not guarantee

an end to threats to our national security. Threats to the

United States in the 1990s and beyond include a combination

of political instability, serious economic dislocation and

widespread military power. This combination of threats
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presents the Air Force with many new and unique challenges.

To meet these threats, the Air Force must maintain flexible,

lethal forces with the ability to respond rapidly (Rice,

1990:1-3). In the past, it was a challenge for the USAF to

"respond with a tailored, appropriately sized, combat

effective force" (Wiswell, 1986:11).

Congressional reductions in the Department of Defense's

budget and authorized size also pose a challenge for

military managers to do "more with less." In 1991,

"Congress voted to trim the 2,000,000-strong US military by

one-fifth over five years" (Callander, 1991:36). According

to Air Force Chief of Staff, General Merrill A. McPeak,

"Our budget this year, in real terms, is about the same size

it was in i981, ten years ago" (Dudney, 1992:2U).

These factors have combined to demonstrate the need for

a flexible Air Force -- an Air Force with the capability to

project its power and influence in a swift, forceful and

effective manner. As former Air Force Chief of Staff

General Charles A. Gabriel said:

If we are to deter and, if necessary, respond (to
conflict) we must ensure that our forces are flexible,
can deploy rapidly anywhere in the world, and can fight
effectively in widely ranging conditions. (Wiswell,
1986:1.4)

This theme was furthered by General HcPeak when he stated

that a reorganized force will "place a premium on speed,

mobility, and lethality" (Dudney, 1992:22). In addition,

the Senate Armed Services Committee has stated that "[t]o

meet potential force-projection missions, the United States

2



must restructure its forces" (Corddry, 1991:80). As the

size of the Air Force decreases, restructuring provides a

means to maintain combat capability and effectiveness(Air

Force Restructure, 1992:2).

As a result, the Air Force restructured its forces in

1991. Major Command reorganization led to the birth of Air

Combat Command and Air Mobility Command. Within Air Combat

Command, flying wings were reorganized into the Objective

Wing structure. The new organizational alignment was

designed to allow the operational units to practice during

peacetime the way they operate in wartime scenario. One

dimension of this restructuring assigns organizational

(flightline) maintenance to its respective flying squadron

(Rine, 1992:24).

general Issue

In 1991, the Air Force undertook a major force

restructuring. In order to respond to changes in the world

today, the Air Force has been guided by the doctrine of

Global Reach/Global Power (Air Force Restructure, 1992:2).

As the Air Force gets smaller as a result of budget cuts,

restructuring is a logical way to maintain combat

capability. One of the most significant results of

restructuring is placing organizational maintenance under

the control of flying squadrons.
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Problem Statment•

As part of the Air Force restructuring, aircraft

organizational maintenance elements were functionally

assigned to their respective flying squadrons. However, the

effect of the Objective Wing structure on aircraft

maintenance performance factors has never been fully

researched.

Research Ouestions

1. What analytical methods have been used in the past to
create performance models?

2- What dependent variables best represent aircraft
maint..na.nce performance?

3. What independent variables affect aircraft maintenance
performince?

4. What problems exist in previous researchers' models and
how might these deficiencies be corrected?

5. Which analytical method is the most appropriate to model

aircraft maintenance performance?

6. Are regression and principal component models useful for
predicting aircraft maintenance performance?

7. Which performance model best predicts aircraft
maintenance performance?

8. Do significant statistical differences exist in aircraft
maintenance performance in the Objective Wing and pre-1992
organizational structures, and, if so, what are they?

4



ScoDe-and Limitations

The scope of tbis research is limited to the effects of

the Air Force reorganization at the Wing level; specifically

the 92nd Wing at Fairchild AFB, Washington. The researchers

consider performance measures for two aircraft, the B-52H

and KC-135R. Results of the research may not be applicable

for other wings or Air Combat Command or Air Mobility

Command as a whole. Additionally, performance data were

derived from 92nd Wing Monthly Maintenance Summaries. These

data may have some recording accuracy or computational

errors.

In Chapter I, the researchers presented the reasons for

the Air Force reorganization. Next, we discussed the need

to evaluate the impact of reorganization on aircraft

maintenance. We concluded the chapter by presenting the

research questions to be explored and the scope and

limitations of the research.

Chapter II presents a review of literature on

organizational structures and evaluating organizational

performance. This chapter provides the answers to research

questions one through four.

Chapter III outlines the methodology we use in Chapter

IV to analyze our aircraft maintenance data. Once the data
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have been analyzed, we can then answer the remaining

research questions.

Chapter IV provides data analysis and a presentation of

our findings. These findings supply the auswers to research

questions five through eight.

Chapter V demonstrates the significance of the research

findings. This chapter also includes our conclusions and

recommendations for further research.

6



II. Literature Review

Introduction

In the past five years, business and industry in the

United States have been experiencing a management

revolution. Quality, down-sizing, and participative

management have been assimilated into the vocabulary of

managers. One dimension of these new philosophies is

corporate restructuring. Successful companies are moving

from a bureaucratic, specialty-oriented organizational

structures to lean, product-oriented structures (Peters,

1987:3, 14, 34, 52-4).

The United States Air Force is no different. In 1991,

U.S. Air Force flying wings were reorganized. The goals of

this reorganization were to decentralize authority, remove

unnecessary layers, and finally give field commanders

responsibility for all elements necessary for mission

accomplishment or "production" (Air Force Restructure, Jan

1992:2).

The focus of this research is to evaluate performance

of the organizational maintenance units assigned to flying

units after this reorganization. In this literature review,

we set the stage for our discussion of the reorganization.

We first discuss the types of organizational structures in

7



business and enumerate some of the fundamental differences

in these structures. Next, we examine the performance of

product-oriented organizations in business. We then examine

some of the effects of organizational change. Next is a

discussion of the differences between the pre-1992 and

Objective Wing structures. We then discuss the methods used

by previous researchers to measure performance in aircraft

maintenance organizations and evaluate the strengths and

weaknesses of this previous research. This part of

Chapter II provides us with the answers to our first four

research questions. We conclude by examining additional

methods of improving aircraft maintenance performance

models.

Qrganizational Structure in Business

Business organizations typically design their

organization in some sort of departmentalized structure.

Two means of departmentalization are by function or product.

In a functionally aligned organization, specialists are

grouped together. For example, in a manufacturing firm all

engineers are grouped in one department, while production

workers are in another. In an oa'ganization aligned based on

product, all elements needed to design, manufacture, and

market a product are assigned to the same department

(Gibson, 1991:446-448). Organizational design decisions are

8



based on company needs, size, and priorities (Litterer,

1980:115).

The functional organization consists of two distinct

elements: line agencies and staff agencies. Line agencies

are, for example, specific product or manufacturing

divisions. Staff agencies consist of the functional

elements such as personnel, accounting, engineering, etc.

Both types of agencies report to the Chief Executive

Officer (CEO). Integration of staff and line activities

occurs at the top management level (Litterer, 1980:130). A

company usually chooses to adopt a functional structure

based on the need or perceived need for centralized control

of specialized functions, such as accounting or data

management (Peters, 1987:427).

In a product-based organizational design, separate

units contain all the elements necessary to do business.

These units are usually organized by product or

manufacturing division (Litterer, 1980:116). Staff elements

b~comue a part ofc l ine iiin ee intetgration of staff

and line functions occurs at the lowest level (Peters,

1987:431).

Both of these structures have merit. However, many

companies are replacing large, functional structures with

smaller, more flexible product-oriented structures. In the

next section, we discuss how organizations that are

organized around product lines have performed well in the

private sector.

9



Product Structure3 iu Practice

In the past, American manufacturing firms focused on

quantity, not quality. "Bigness" and mass production were

the standard for industry. The hierarchical, function-

oriented, centralized structure of American companies has,

in fact, stalled productivity (Peters, 1987:4). The

"bigness" and bureaucracy of American industrial firms has

slowed progress and limited rapid response to change. Line

divisions often must seek approval from staff bureaucracies

prior to carrying out a new project. Taskings, memos, and

problems are passed up and down different chains of command

before decisions are made (Peters, 1987:257-58).

Creatiny- -a product-oriented organization can increase

efficiency, responsiveness, and productivity (Peters,

1987:16-17). In Thriving on Chaos, Tom Peters gives several

anecdotal examples of these, such as Ford's Team Taurus, or

the Limited (Peters,1987:637). In addition to Peters, some

other researchers have examined the effect of product

structures.

In 1986, a group of researchers from the Massachusetts

Institute of Technology compared automobile production by a

"traditional" centralized company (General Motors) with

production by a product-oriented or "lean" producing firm

(Toyota). The lean producers clearly had the advantage.

Productivity and quality were significantly better. The

Toyota plant averaged 16 hours to assemble a car, while

10



General Motors averaged 31 hours. Toyota had only 45

assembly defects per 100 cars, while General Motors had 130.

Although reasons other than structure contributed to this

success, a product-oriented structure played an important

role (Womack, 1990:77-81).

Another group of researchers studied what they termed

"high involvement" companies. One facet of these companies

was their organizational structure. High involvement

companies were organized around a product or geographical

location. The researchers found that productivity and

quality in these plants exceeded that of other plants

manufacturing the same product (Perkins, 1983:195).

A product-oriented structure has contributed to success

in the private sector. This can be translated into the

military. "The same principles of success" can apply to the

public sector as well as to the private (Peters, 1987:47).

Structure and Change in Organizations

A great deal of research has been done on the

relationship between organizational structure and

environment. Factors such as technology, market, product

demand and environmental uncertainty have an impact on

organizational structure (Gibson, 1991:515-17). Some recent

research has focused on organizational change as a result of

environmental change, and the performance of organizations

who fit their structure to the environment. Reorganizing

11



for the sake of reorganizing does no good. However,

reorganization as a response to changes in the environment

often enhances performance (Haveman, 1992:49). Research of

changes in the navings and loan industry analyzes the

connection between organizational change as a response to

the changing environment and success and survival of the

organizations. The savings and loan industry has

experienced environmental change with respect to technology,

regulations and the economy. The researcher in this case

hypothesizes that when an organization changes in response

to environmental changes, organizational performance and

survival chances improve because this change "enables

organizations to meet new environmental demands." This

hypothesis is supported by the results of performance

analysis of savings and loans over a ten year period.

Performance improved as a result of organizational change

(Haveman, 1992:52-71).

Another study attempts to establish causal

relationships between change as a result of the environment

and performance. Organizational structure is an intervening

variable in this relationship. The researchers develop a

model that ultimately links change to performance. In the

model, transformational change is defined as change that is

a response to the external environment that impacts the

strategy or mission of the organization. Transactional

change is change that involves structure, management

practices and climate. Transactional and transformational

12



changes both affect motivation, which in turn, affects

performance. The researchers establish a causal

relationship between structure and climate: the working

conditions and/or level of participation in the company.

The researchers, in turn, show a link between climate and

motivation, and performance. The most significant aspect of

structure that made a difference was if workers saw the

structure as useful. If the structure is viewed as one that

enhances work team relations, it will have a positive impact

on performance (Burke, 1992:523-39).

The "fit" between the environment and organizational

structure is also an area of great interest. Contingency

Design categorizes organizational design on a spectrum from

mechanistic to organic. A mechanistic structure is

characterized by centralized, controlling authority and

little flexibility. An organic structure is characterized

by a decentralized, flexible structure. An organic

structure is the best fit in an environment of uncertainty.

Fitting an organic structure to an uncertain environment

will enhance performance (Gibson, 1991:509).

Changes in structure that are useful and are made to

fit environmental conditions most positively impact

performance (Haveman, 1992:49). Environmental change has

been an impetus for restructuring in the United States Air

Force. Air Force leaders have developed the Objective Wing

structure in an attempt to fit organizational structure to

an uncertain environment (Air Force Restructure,1992:2).

13



ittingD��c t_ Environment ObQjective Wings

In 1991, the Objective Wing was born. This new

structure was designed to align personnel around a specific

"manufacturing division," tte operational flying squadron,

and a specific product -- aircraft sorties. According to

Secretary of the Air Force, Donald Rice, "We've applied

modern mianagement principles: delayering, streamlining,

... and pushing power and responsibility down to the talented

people who do the day to day work" (Rice, Jan 1992:6). To

see how the Objective Wing has changed aircraft maintenance,

we must first look at the "old" wing organizational

structure.

Prior to the reorganization, tlightline aircraft

maintenance branches were assigned to the Organizational

Maintenance Squadron (OMS). Intermediate or off-equipment

maintenance fell. under the Field Maintenance Squadron (FMS)

and the Avionics Maintenance Squadron (AMS). Maintenance

and weapons loading fell under the Munitions Maintenance

Squadron (M-._.). A.ll of t.hes squadrons were placed under

the functional authority of the Deputy Commander for

Maintenance (DCM). Flying Squadrons were assigned to the

Deputy Commander for Operations (DO). Both the DCM and the

DO reported to the Wing Commander (SAC Handbook, 1989:Ch 2,

3-16).

Even under this "old" structure, the flightline

branches worked very closely with their associated flying

14



unit. However, the people who planned and produced aircraft

sorties in association with the flying squadrons still fell

under a wing maintenance hierarchy (Canan, 1992:36). This

organization resulted in coordination across two chains of

command to make a decision, such as producing the flying

schedule. Operations and maintenance concerns were

arbitrated at the wing commander level.

In the Objective Wing, this is not the case. The

Objective Wing is organized into three groups: the

Operations Group, the Logistics Group and the Support Group.

Each group "produces" a different product. The Logistics

Group includes the Maintenance Squadron. All off-equipment

aircraft and munitions maintenance elements are assigned to

the Maintenance Squadron. The product of the Maintenance

Squadron is aircraft/munition components and major aircraft

repairs. The Operations Grour produces aircraft sorties.

All elements necessary to do this, including weather, base

operations and flightline maintenance are assigned to the

assigned directly to their supported flying squadron. In

addition, weapons loaders, previously assigned to the

Munitions Maintenance Squadron, are part of the flightline

maintenance branch. The branch reports to the squadron

maintenance officer, who is co-equal to the squadron

operations officer (Air Force Restructure, Jan 1992:5).

The goal of this reorganization is to improve combat

capability and increase peacetime effectiveness. The

15



Objective Wing structure is designed to accelerate reaction

time and improve processes by pushing power and authority

down to the lowest level (Air Force Restructure, Jan

1992:2). The Air Force has attempted to fit organizational

structure to our ever-changing world. However, we do not

know how this change has affected maintenance performance.

Perormance Models

In order to answer research questions one through four,

we analyzed the efforts of previous researchers. Previous

research examines the effects of chosen maintenance

performance factors on aircraft mission capability and

mroductivity, These resa-earech effrs and the lesscns

learned from them, are summarized in Table 1 and in

following paragraphs.

The first area we examined was the type of methods used

in the past. This answers research question one, what

analytical methods have been used in the past to create

performance models? Previous researchers have developed

predictive models of aircraft maintenance performance. This

was accomplished primarily through the use of regression

analysis of aircraft maintenance performance data. Again,

the analysis methods used are summarized in Table 1.

Performance Factor Selection. Once we determine the

methods used by previous researchers, our next step is to

determine the answers to research questions two and three:

16



What dependent variables best represent aircraft maintenance

performance and what independent variables affect aircraft

maintenance performance? In the past, several methods have

been employed in selecting the aircraft maintenance

performance factors to be examined. Selection methods range

from using personal experience, expert opinion, surveys from

Deputy Commanders for Maintenance to information from higher

headquarters. In all, past researchers have analyzed 53

dependent and independent variables while building various

predictive models of aircraft performance. Appendix A

provides a comprehensive list of these variables, and

specifies which factors were chosen as dependent and

independent for each research effort.

TABLE 1

SUMMARY OF AIRCRAFT MAINTENANCE PERFORMANCE MODEL RESEARCH

RESEARCHERS METHODOLOGY AND VARIABLES LESSONS LEARNED
TOOLS

i--7

,. OD980 STEPWSE REGRESSION I iNDEPENDENT CANNOT ASSUME MAI'TENAr4CE

WILCOX SIGNED RANK 9 DEPENDENT DATA IS FROM A NORMAL
TEST (INCLUDING FMC RATE, DISTRIBUTION. USE OF
CORRELATION ANALYSIS MANHOUR PER FLYING NONPARAMETRIC STATISTICALHOUR,NMCM RATE) ANALYSIS.

GIlULLAND(1990) STEPWISE REGRESSION 5 INDEPENDENT TESTED INTERACTION AMONG
CORRELATION ANALYSIS 8 DE:'ENDENT VARIABLES
RESIDUAL ANALYSIS (INCLUDING MC RATE CONDUCTED RESIDUAL ANALYSIS

AND MANHOUR PER
FLYING HOUR).

JUNG(1991) STEPWISE REGRESSION 23 INDFPENDENT DIFFERENT AIRCRAFT PRODUCE
CORRELATION ANALYSIS 3 DEPENDENT (MC DIFFERENT REGRESSION MODELS
RESIDUAL ANALYSIS RATE. NMCM, NMCS)

DAVIS & WALKER STEPWISE REGRESSION 4 INDEPENDENT TESTED RANDOMNESS BY SPLIT
(1992) PAIRED T-TEST 1 DEPENDENT (MC HALF TECHNIQUE

RATE) 
-J
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By aggregating the aircraft maintenance performance

factors used in the past, we observe that "Mission Capable

Rate" stands out as the most commonly caosen (dependent)

performance factor. In addition, "Manhours Per Flying Hour"

shows up as the most frequently used independent variable.

Therefore, for our research, we include these two commonly

used and validated variables in our predictive models. Iu

addition, we use several other independent variables *that

have proven useful in past predictive models. The complete

list of variables used in this study are listed and defined

in Chapter III. This aggregate list of variables provides

the answers to research questions two and three. That is,

it reveals which dependent variables best represent aircraft

maintenance performance, and which independent variables

affect aircraft maintenance performance.

Model Applicability. To answer research question four,

we must first evaluate problems previous researchers had in

developing their performance models. These are summarized

as lessons learned in Table 1. we will discuss some

specific problems in greater detail. We also propose some

ways to correct model deficiencies.

In 1991, Jung sought to derive predictive models for

nine separate mission design series (MDS) aircraft (Jung,

1991). In so doing, he attempted to form an aggregate model

of maintenance performance which was applicable across MDS

lines. This aggregation of predictive models yielded
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inconsistent and inconclusive results. In Jung's own words,

"future research in this area at the aggregate level may not

be appropriate" (Jung, 1991:115, 116).

In 1992, Davis and Walker attempted to determine

whether the Air Force's reorganization into the Objective

Wing structure resulted in improvements to aircraft

maintenance performance factors (Davis & Walker, 1992).

Since the reorganization was recent, much of the necessary

date were unavailable. To compensate for this lack of data,

Davis and Walker attempted to compare the performance

factors of Air Force F-15 and F-16 aircraft to the U.S.

Navy's F-14 and F/A-18, across MDS lines. They too learned

that "the inconsistency of independent variables selected by

stepwise regression does not allow direct comparison of

different types of aircraft" (Davis & Walker, 1992:60).

These previous researchers has shown that regression

model variables differ based on aircraft type. That is,

there is no universal aircraft performance model. Our

research attempts to avoid this pitfall by analyzing the

effects of the Objective Wing structure on two specific

aircraft types. Specifically, we analyze KC-135R and B-52H

data from the 92nd Wing at Fairchild AFB, Washington.

Overall, regression analysis is a good tool to build

performance models. The main shortcoming in previous

research is the way data are handled prior to using them for

the regression analysis. One problem with previous research

is that, in most cases, data were not tested for normality
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or randomness prior to analysis and model building. There

are also no tests for autocorrelation of dependent

variables. In our research, we attempt to properly

represent the data prior to use in the regression models.

We attempt to circumvent this problem by analyzing the raw

data and, if necessary, transforming it, using an

autoregressive model. Additionally, we will use

nonparametric tests if the data do not conform to a normal

distribution. The specific methods involved in this data

analysis and transformation process are explained in the

Chapter III. This section has provided the answer to

research question four. That is, what problems exist in

previous researchers' models and how might these

S ummar

Since the Air Force became a separate organization, it

has undergone numerous changes in both leadership and

norfani atinnal design M.Tri- cinr"M *hM "T ^P W~- Warb TT

have the changes been as dramatic and pronounced as those

made in the last two years. The questions remain: Can the

U.S. maintain the same level of national defense with less

manpower and a reorganized Air Force? Have we enhanced or

degraded our defense capability by reorganizing? Which

maintenance factors contribute the most to this defensive

capability?
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This chapter reviewed literature in subject matter

related to these questions. We first reviewed the

differences between functional and product organizations.

We then gave examples of the successes of product-oriented

basinesses in the civilian community. A discussion of

organizational structure in response to environment

followed. Next, we presented the Objective Wing aircraft

maintenance structure. Finally, we summarized previous

research on aircraft maintenance performance models. This

summary furnished us with answers to research questions one,

two, three and four. Modelling and comparison techniques,

similar to those of previous researchers, are used to

determine the answers to our remaining research questions.
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III. Methodologv

Introduction

This chapter outlines the methodology used by the

researchers to answer research questions five through eight.

It also includes a description of the population and sample,

data collection, and variable definitions. We include a

review of the statistical tests and methods used to explore

the research questions, and a:iv assumptions and limitations

of the research.

Population and Sample

The population for this study is United States Air

Force flying units organized under an Objective Wing

structure. This population includes, but is not limited to,

Air Combat Command bomber units and Air Mobility Command

tanker units. The sample for this study is the 92nd Wing's

B-52H and KC-135R aircraft. This sample was chosen based on

convenience. Data were readily available.

Data Collection and Treatmgnt

Data were obtained from the 92nd Wing in the form of

monthly maintenance summaries. The researchers compiled the
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variables of interest and created data files to use in our

analysis.

Variable Definitions

Our data sets are based upon nine independent and two

dependent variables for both the B-52H and KC-135R models.

Thirty-seven months of B-52H and twenty-eight months of

KC-135R data were available. Variables were selected based

on variable choices in previous research and also based on

convenience. Significant factors that were consistently

reported in the monthly maintenance surimaries were used.

Table 2 summarizes all the variables and their names in the

data set. This section lists and defines these variables.

For each aircraft, we have two dependent variables in our

data set:

Mission CaDable (MC) Rate: Percentage of total time an

aircraft is mission ready. Defined as total MC hours

divided by total possessed hours (92 Wing, 1993:19a).

Total Not Mission Capable Maintenance Rate (TgMCMi:

Percentage of total time an aircraft is not mission ready

due to maintenance. Defined as Total Not Mission Capable

Maintenance hours'divided by possessed hours (92 Wing,

1993:19a).
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Both of these rates are based on aggregate hours for the

entire aircraft fleet.

There are nine independent variables in each aircraft data

set:

Air Abort Rate: Number of Air Aborts divided by total number

of sorties flown (SAC Maintenance officer Handbook, 1989:5-

5).

Averaýe Possssed: Average number of each aircraft type

possessed by the wing (92 Wing, 1993:10a).

Cannibalizatin LRate: Number of cannibalization actions

divided by number of sorties (92 Wing, 1993:12).

Maintenance Cancellation Rdte: Number of sorties cancelled

due to maintenance problems divided by the number of sorties

scheduled (92 Wing, 1993:13).

Delayed Discre'ancy Rate: Average number of maintenance

discrepancies awaiting action (92 Wing, 1992:15).

S;hedulina Effectiveness Rate: Number of sorties scheduled

minus total schedule deviations divided by number of sorties

scheduled (92 Wing, 1993:18).
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Maintenance Late Takeoff Rate: Number of late sorties due

to maintenance divided by total number of sorties flown (92

Wing, 1993:14).

Manhours per Flving Hour: Number of maintenance man hours

for each aircraft type expended divided by total hours flown

(92 Wing, 1991:14).

Manhours her Sortie: Number of man hours expended divided

by the number of sorties (92 Wing, 1991:14).

TABLE 2

LIST OF VARIABLE NAMES IN DATA SET

ABORT Abort Rate

AVPOS Average Possessed Aircraft

CANN Cannibalization Rate

CANX Maintenance Cancel Rate

DD Delayed Discrepancy Rate

EFFEC Scheduling Effectiveness

LTO Late Takeoff Rate

MC Mission Capable Rate

HHFH Man Hours per Flying Hour

NHS Man Hours per Sortie

NMC Total Not Mission Capable
Maintenance Rate
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Data Characteristjic

We must first attempt to answer research question

five: whicf analytical method is the most appropriate to

model aircraft maintenance performance? In order to do

this, we must determine the attributes of our data set. We

test for normality, randomness and autocorrelation of the

dependent variables in the data set. If data are not from a

normal distribution, for example, we must use nonparametric

tests to evaluate differences in variabi.es. If dependent

variables exhibit autocorrelatica, we will be required to

use an autoregressive model.

The Wilk-Shapiro test and Rankit plots are tests for

rma 'MIA. i ICY* r"N"M L'.alINJ.1t FL.. %9J LQP a jj±UL~j O..1 L a I I P%..LLs, ViL-

expected values of a transformed distribution with a mean of

zero and standard deviation of one. If the actual values

closely approximate these expected values, then the plot

produced will be linear. Any departures from this linearity

are indications of nonnormality. The Wilk-Shapiro test also

produces an approximate Wilk-Shapiro statistic. The value

of this statistic is between zero and one. A small value of

this statistic coupled with a nonlinear Rankit plot suggests

nonnormality (Statistix User's Manual, 1992:246-7). A value

below the table value for this statistic also indicates

nonnormaility. Based on a = 0.05 and sample sizes of 28 and

37, the table values for the KC-135R and B-52H data sets are

0.924 and 0.936 respectively. If the Wilk-Shapiro statistic
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falls below these values, then the variable being tested is

not from a normal distribution.

The runs test determines the randomness of a sample.

This test is based on comparing the number of runs in a

sample with the hypothesized value for this sample. A run

is a set of two or more values either consistently above or

below the sample median (Statistix User's Manual, 1992:244).

A very small or very large number of runs in a sequence

would indicate non-randomness. A rejection region is

determined based on the probability of a certain number of

runs, total number of values above and below the median and

a chosen significance level (Mendenhall, 1986:643-46).

The final initial test of the data set is to test the

dependent variables for autocorrelation. Autocorrelation is

the tendency of time series residuals to alternatively group

into positive and negative clusters (McClave and Benson,

1991:835). The runs test can be used for this as well. If

a sample has too few runs, this indicates a small number of

very long runs which wo u ,d sggest p , e,,r- laic.

Conversely, if a sample has a large number of runs, this

indicates many short runs and points to negative

autocorrelation (Statistix User's Manual, 1992:245).

Autocorrelation plots also provide a means to determine

if autocorrelation is present. The plots include 95 percent

confidence intervals for correlation of points with previous

points. This interval is based on the assumption that

autocorrelation for each subsequent point, or lag, is zero.
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The autocorrelation is presented as a horizontal bar. If

this bar is beyond the confidence interval, then there is

evidence of significant autocorrelation (Statistix User's

Manual, 1992:254-55).

Another useful test for autocorrelation is the Durbin-

Watson test. This test is based on a regression model and

calculates a test statistic based on the number of

observations and the difference between successive residual

values in a time series. If there is no autocorrelation,

the value of this statistic is approximately two. If

positive autocorrelation exists, the value approaches zero.

If there is negative autocorrelation, the value approaches

four (McClave and Benson, 1991:836). We will use the

Durbin-Watson test as a confirmation of autocorrelation

based on the plots arid runs test.

If there is evidence of autocorrelation, we correct

for it through the use of an autoregressive model. An

autoregressive model corrects for autocorrelation by means

of an autoregression coefficient and an independent time

se.ies with a mean of zero and constant variance. The value

of the autoregression coefficient is based on the degree of

autocorrelation. A coefficient of 0.8 indicates strong

autocorrelation, 0.5 indicates moderate autocorrelation, and

0.2 indicates weak autocorrelation. The autoregression

model uses a modification of least squares approximation to

fit a straight line to the corrected data (McClave and

Benson, 1991:841-3).
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We next answer research question six: are regression

and principal component models useful for predicting

aircraft maintenance performance? We start, of course by

building the models. In order to answer this question, we

evaluate model usefulness by means of an F test, evaluate

residual plots and perform model validation with actual

data.

To build our performance models we use two different

methodologies: stepwise regression of the independent

variables and also stepwise regression of their principal

components.

Regression analysis is an iterative process which

determines which independent variables contribute the most

to the prediction of a dependent variable. This process

will "provide a good fit [of an equation] to a set of data,"

allow the modeler to "give good estimates of the mean value

of y [dependent variable]," and finally a model will provide

"good predictions of future values of y for given values of

the independent variables" (McClave and Benson, 1991:606).

Stepwise regression serves as a means to differentiate

between important and unimportant independent variables to

include in a model. Stepwise regression is a systematic

approach which takes into account variable interactions and

higher order polynomials. Stepwise regression is an

iterative approach which tests all possible combinations of
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factors and discards insignificant factors. Terms are

discarded based on the value of their model parameter. If

the parameter value is riot significantly different from

zero, it is discarded. Terms with significant parameter

values will become part of the model (McClave and Benson,

1991:671-3).

The purpose of principal component analysis is to

develop successive functions of two or more variables which

account for as much of the total variance as possible.

These values are called the principal components (Daintith,

1989:262). Principal components are uncorrelated

representations of data points. They are based on the

eigenvalues of the correlation matrix (SAS User's Guide,

1985:622). The precise mathematical methods used to develop

the priycipal components are beyond the scope of this

thesis. Principal components are used to reduce the number

of factors in a regression model and minimize the effects of

multicollinearity among the independent variables.
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regression coefficients. This may, in turn, result in

unstable or misleading model estimates. Principal component

regression is one approach that can overcome the problem of

multicollinesirity. Principal component regression is done

by substituting the values of the principal components for

the independent variables. If all principal components are

included in the model, it is roughly equivalent to the

ordinary regression model. However, if some principal
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components are deleted from the regression equation,

variance of the regression coefficients is reduced.

Principal components can be eliminated by several methods,

including eliminating elements that are essentially equal to

zero, the methodology used in stepwise regression (Jolliffe,

1986:129-133). As a result, we use stepwise regression to

develop a reduced principal component model.

Analysis and Validation. Once the models are

developed, we perform residual analysis. Residual analysis

is also a very important part of regression. A residual is

the difference between the model prediction and the actual

value of an independent variable. In building our model, we

assume that the residuals are normally distributed with a

mean of zero. If this is not the case, it may be necessary

to transform the dependent variables based upon the pattern

of the residuals. Transformation techniques allow data to

more closely fit a regression line. Logarithmic or

exponential transformations are most common transformation

techniques (McClave and Benson, 1991:677-81).

Once we have developed, analyzed and transformed the

models as needed, we validate the models by using six months

of maintenance performance data. We compare the predicted

and actual values of the variables in the models.
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Model Commarisons

We now move on to research question seven: which

performance model best predicts aircraft maintenance

performance? To answer this question, we compare the

regression and principal component models. We examine the

values of model predictions and the average difference in

predicted and actual values. We look at model statistics

including the adjusted R-square value. The adjusted R-

square value, the sample multiple coefficient of

determination, represents the amount of variation

attributable to the regression model adjusted for the number

of terms in the model. An adjusted R-square value of zero

iuplie a complete lack of fit, while an adjusted R-square

value of one implies a perfect fit (McClave and Benson,

1991:541). We also evaluate Sum of Squares Error, Root Mean

Square Error (RMSE) and the F statistic to determine the

usefulness of the models. We determine the values of these

factors for each model and select the best model on the

basis of these factors.

omari f formanceFacto

We next answer research question eight: do significant

statistical differences exist in aircraft maintenance

performance in the Objective Wing and pre-1992

organizational structures, and, if so, what are they? To
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answer this question, we perform statistical comparisons of

actual performance data and model predictions.

We split our data set into data collected under the

pre-1992 maintenance structure and the Objective Wing

structure. This cut is made based on a May 1992

implementation of the Objective Wing at Fairchild AFB. We

then perform statistical comparisons of the independent

variables, dependent variables, and model predictions of

dependent variables. If all the data follow a normal

distribution, we use a difference in means t-test. In the

difference in means test, the t statistic is based on the

difference in two sample means and the samples pooled

variance. The test of hypothesis determines if there is a

significant statistical difference between the means of the

two samples. The difference in means tests assumes that the

samples are independent and taken from a normal distribution

(McClave and Benson, 1991: 403-407).

If the data do not follow a normal distribution, we

use a nonparamentric t fni thes comparisons, th Meian

Test. This method tests to see if there is a difference in

the central tendency, or median, of two samples. If the two

samples represent populations with the same median, we

expect a similar number of values to be above or below the

median for all the data. The median test then performs a

chi-square approximation based on the number of values

expected to be above/below the median. It calculates a
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p-value based on the hypothesis that the medians are the

same. A very low p-value indicates that there are

significant differences in the medians (Statistix User's

Manual, 1992:119-120).

Based on the results of the difference in means and

median tests, we will be able to determine if significant

differences exist in performance measures in the pre-1992

structure and the Objective Wing.

To answer our research questions, our data analysis

includes tests for normality, randomness, and

autocorrelation. We then develop performance models using

two different methodologies: principal component analysis

and stepwise regression. We validate and evaluate these

models, compare model usefulness and select the best

predictive model for each dependent variable. Finally, we

perform statistical comparisons of performance factors and

model predictions under both aircraft maintenance

organizational structures. There are, however, some

assumptions and limitations in our research.

Assumptions and Limitations

The researchers assume that data received from the 92nd

Wing analysis section are accurate and complete. We assume

that the data are an accurate representation of actual

maintenance performance measures. This study is limited to
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the effects of the Objective Wing structure at the 92nd

Wing.

This chapter included a discussion of our population

and sample, variable definitions, and most importantly

covered the methodology the researchers use to investigate

research questions five through eight. We gave an outline

for our data analysis and background information on the

statistical methods used. We also discuss the assumptions

and limitations of our research.

Chapter IV presents the results of our analysis based

on this research methodology. In Chapter IV, we answer

research questions five through eight.
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IV. Findings and Analysis

Introduction

This chapter presents the findings of the researchers,

in particular, we answer research questions five through

eight. To answer these questions, we discuss the results of

normAlity, randomness, and autocorrelation tests. Next, we

discuss our model building process, including residual

analysis and validation. We present comparisons of

performance models and select the "best" model. Finally, we

discuss the results of comparisons of actual performance

data and model predictions.

Data Characteristics

Our first step was to answer research question five:

which analytical method is the most appropriate to model

aircraft maintenance performance? To do this, we perform

analysis of normality and independence among the dependent

and independent variable samples. We also test for

autocorrelation of the dependent variables. We determine

the attributes of our data set to make determinations on how

to handle these data in later analysis.

Dat - We first examine time series plots of our

data set. These plots are included in Appendix B. The time
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series plots give us a graphical representation of our data

which we can examine as questions arise in our analysis.

Runs and Wlk-Shaoiro s We tested for normality

to determine if it would be appropriate to use t-tests or if

nonparametric tests are needed. Tables 3 and 4 summarize

the results of the Wilk-Shapiro test. Rankit plots are

found in Appendix C. For the KC-135R, the table value of

the Wilk-Shapiro statistic at a = 0.05 is 0.924. Any values

that fall below this indicate nonnormality. Based on this,

ABORT, AVPOS, CANX and LTO do not exhibit normality.

For the B-52H, the table value based on a sample size

of 37 and a = 0.0ý is 0.936. Based on this value, ABORT,

AVPOS, DD, EFFEC and LTO are not from a normal distribution.

All other variables appear to conform to a normal

distribution.

TABLE 3

RESULTS OF WILK-SHAPIRO TEST FOR NORMALITY (KC-135R)

ABORT 0.5204 NO
AVPOS 0.8467 NO
CANN 0.9592 YES
CANX 0.7669 NO
DD 0.9516 YES
EFFEC 0.9566 YES
LTO 0.8870 NO
MC 0.9574 YES
MHFH 0.9822 YES
MRS 0.9796 YES
NMC 0.9640 YES
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TABLE 4

RESULTS OF WILK-SHAPIRO TEST FOR NORMALITY (B-52H)

ABORT 0.4613 NO
AVPOS 0.9061 NO
CANN 0.9731 YES
CANX 0.9453 YES
DD 0.9012 NO
EFFEC 0.7958 NO
LTO 0.9082 NO
MC 0.9769 YES
MHFH 0.9903 YES
MHS 0.9649 YES
NMC 0.9896 YES

We used the runs test to determine if our sample data

were random. Tables 5 and 6 summarize the results of the

runs test. Six of eleven KC-135R and eight of eleven B-52H

variables test within the expected number of runs. For both

aircraft types, ABORT and AVPOS have too few runs. In the

case of ABORT, the median value was zero. Therefore, all

values were either tied with the meiian or above the median.

The result is one long run. This is due to the fact that

aborts are rare and the abort rate is often zero. In the

case of AVPOS, the average number of B-52H aircraft assigned

went down over time due to a steady decrease in authorized

aircraft. Conversely, the number of KC-135R aircraft

increased steadily over time due to conversion from the

KC-135A. This resulted in long runs. Both aircraft delayed

discrepancy statistics exhibit too few runs.
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TABLE 5

RUNS TEST RESULTS FOR KC-135R

EXPECTED NUMBER RUNS ACTUAL NUMBER RUNS

VRAL LOWER URPER

ABORT * * (1)
AVPOS 9 21 (7)
CANN 9 21 13
CANX 9 21 12
DD 9 21 (3)
EFFEC 9 21 (8)
LTO 9 21 12
MC 8 19 8
M4HFH 9 21 13
MHS 8 20 11
NMC 3 Ii (12)

"•" Not enough values significantly different from median.

Runs test requires a minimum of 2 runs.

"()" Actual number of runs is outside expected runs limits.

Source: Langley, 1970: 325

For both weapon systems, the delayed discrepancy rate

decreases dramatically beginning in November 1991. This

corresponds to the deactivation of the Alert Force in

October 1991. This event, in addition to the change in

organizational structure, may affect maintenance performance

factors. Two other KC-135R variables fall outside the runs

parameters. Scheduling Effectiveness (EFFEC) exhibits one

too few runs, while Total Not Mission Capable Maintenance

(NMC) exhibits one too many. Both of these variables are

very close to being within the range.
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TABLE 6

RUNS TEST RESULTS FOR B-52H

EXPECTED NUMBER RUN5 A•NUAL MBTER UNS

VRBEQE3 UPPER

ABORT * * (1)
AVPOS 12 26 (2)
CANN 11 25 14
CANX 11 25 18
DD 12 26 (6)
EFFEC 12 26 16
LTO 12 26 16
MC 12 26 14
MHFH 12 26 20
MIHS 12 26 14
NMC 12 25 12

"*" Not enough values significantly different from median.

Runs test requires a minimum of 2 runs.

",(), Artal n-mber of runs i s id• expected runs limits.

Source: Langley, 1970: 325

Most of our variables exhibit randomness and normality,

however, a few do not. This is vital to later analysis.

Autocorrelation. We test for autocorrelation of the

dependent variables (MC, NMC) by means of autocorrelation

plots. These plots are found in Appendix D. For the

KC-135, the autocorrelation plots of both MC and NMC are

within the confidence intervals. For the B-52, MC is within

the confidence interval. NMC is within the interval,

however, values appear to fluctuate from one end of the

interval to the other. This suggests possible
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autocorrelation. We will use the Durbin-Watson statistic

from the regression models to determine if this

autocorrelation is significant.

To answer research question six, we primarily focused

on two types of regression models, one based on regression

of the independent variables which we will refer to as the

"regression" models, and one based on regression of the

principal components of these variables which we refer to as

the "principal component" models. We produced full and

reduced regression models for all the dependent variables,

full and reduced principal component models for all the

dependent variables, and one autoregressive model due to

evidence of autocorrelation in one model. We based these

models on 31 months of B-52H data and 22 months of KC-135R

data. Six months of each data set were set aside for model

validation.

RegressionLModels. The first step in modelling

involved developing full and reduced regression models for

each dependent variable (B-52 MC, B-52 NMC, KC-135 MC and

KC-135 NMC). We used the System for Statistical Analysis

(SAS) REG and STEPWISE procedures to develop these models.

We then compared each reduced model to its full model by

means of an F-test. Results of these F-tests are summarized

in Table 7.
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The Test of Hypothesis took the form of:

Ho: Coefficients of added terms in full model equal zero.

Ha: At least one coefficient does not equal zero.

Test Statistic: F = SSE(reduced)-SSE(full)/(k-g)

SSE(full)/(n-(k+l))

k = number of terms in full model
g = number of terms in reduced model
SSE = Sum of squares error
n = sample size

Rejection Region : Test Statistic > Table Value

For all of our regression models (B-52 MC and NMC,

KC-135 MC and NMC), none of the full models contributed any

significant additional parameters. In all cases, our test

statistic was less than the table value at a = 0.05

significance level. As a result, we eliminated the full

regression models for consideration as our final performance

model. However, our stepwise models may be useful as

prediction models. Table 8 summarizes the components of

these stepwise models.

Principal Component Models. The next step in our

analysis was calculation of the principal components based

on our nine independent variables. We used the SAS PRINCOMP

procedure to calculate the principal components, The

principal components and the correlation matrix are included

in Appendix F. We created a data set of the principal
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component values and then used them as independent variables

for regression analysis of both dependent variables. We

developed full and reduced regression models based on these

principal components just as we did for the independent

variables. We identified these variables as P1 through P9.

We again compared the full and reduced models for both

the dependent variables by means of an F-test. Results of

these tests are summarized in Table 9. Once again, in all

cases the full models did not provide any additional

significant parameter values.

TABLE 7

F-TEST COMPARISON OF FULL AND REDUCED REGRESSION MODELS

KC-135R

TABLE YALUE

MC 0.38 2.85

i4 02 2.91

B-52H

TABLE VALUES

STEST STATISTIC ALPHA = Q.05

MC 0.29 2.63

NMC 0.95 2.42

Source: McClave and Benson, 1991 1176 - 1179
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TABLE 8

RESULTS OF STEPWISE REGRESSION

AIRCRAFT DEP. VARIABLE MODEL EOUATION

B-52H MC 73.19 + 4.46 ABORT - 0.42 DD
+ 0.18 MHFH

NMC 13.2 + 4.6 CANN

KC-135R MC 95.12 - 0.83 DD

NMC 8.69 + 0.45 LTO - 0.09 MHFH

TABLE 9

F-TEST COMPARISON OF FULL AND REDUCED PRINCIPAL COMPONENT
MODELS

KC-135R

VARIABLE TEST STATISTIC ALPHA .05

KC-135R MC 0.24 3.00
NMC 0.69 2.91

B-52H VIC 0.90 2.49
NMC 1.13 2.42

Source: McClave and Benson, 1991: 1176 - 1179
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TABLE 10

RESULTS OF STEPWISE REGRESSION OF PRINCIPAL COMPONENTS

AI AT DEP, VARIABLE MODEL EOUATIQN

B-52H MC 78.04 - 2.00 P1 - 0.86 P2

NMC 16.25 + 0.61 P1

KC-135R MC 88.55 + 0.99 P1 - 1.3 P2 -. 38 P4

NMC 7.77 - 0.71 P1 + 0.27 P4

We eliminated all of the full principal component regression

models from consideration for the final performance model.

The resulting reduced regression models are summarized in

Table 10. Interestingly enough, since the first principal

component accounts for the most variance of the independent

variables, it is included in all models as expected.

Effects of Autocorrelation. The next step in our

analysis wa L U-LLU.1i1 ii 01 uL JUL ,u0d=.l

autocorrelation. We did this by means of a Durbin-Watson

d statistic. The Durbin-Watson Test of Hypothesis took the

form of:

Ho: No significant positive or negative autocorrelation
exists.

Ha: Significant pLsitive or negative autocorrelation
exists.

Rejection Region: T > dL or 4-T < dL,
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where

TS = d Test statistic
dL = d lower (from table)

None of the KC-135R models and neither B-52H MC model

exhibited significant positive or negative autocorrelation

based on the Durbin-Watson statistic at a = 0.05. However,

the B-52H NMC regression model's d statistic fell between

the table's upper and lower limits indicating possible

significant autocorrelation. The reduced principal

component model's d statistic was less than the lower limit,

indicating positive autocorrelation. The d statistic values

and table values are summarized in Table 11. Based on the

evidence of autocorrelation, we chose to eliminate the

principal component and regression models for B-52H NMC and

to develop an autoregressive model.

Autoregressive Model. We used the SAS AUTOREG
procedure to develop a prediction model for B-52H NMC. We

essentially started frow scratch on this model. We again

component models using autoregression. We based the reduced

models on the previous stepwise regression results. Instead

of "plugging them into" the SAS REG procedure, we used the

AUTOREG procedure. This resulted in autoregressive models

based on these same factors. These models are summarized in

Table 12. The amount of autocorrelation present can be

determined by the value of the autoregression coefficient.
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TABLE 11

RESULTS OF THE DURBIN-WATSON TEST FOR AUTOCORRELATION

TEST STATISTIC d LQWER d UPPER

B-52H

MC 1.74 1.23 1.65
REGRESSION

NMC 1.45 1.36 1.50

PRIN. COMP MC 1.89 1.30 1.57

NMC 1.09 1.36 1.50

KC-135R

MC 2.43 1.24 1.43
REGRESSION

NMC 1.78 1.15 1.54

PRIN. COMP MC 2.22 1.05 1.66

NMC 2.00 1.15 1.54

Source:McClave and Benson, 1991: 1188.

In the reduced regression model, the coefficient is 0.36,

which indicates weak to moderate autocorrelation. For the

principal component model, the coefficient is 0.47,

indicating moderate autocorrelation. There is definitely

evidence of autocorrelation, thus our choice of an

autoregressive model seems appropriate.

We next evaluate the usefulness of the models. We once

again compared both full and reduced significant additional
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TABLE 12

AUTOREGRESSION MODEL RESULTS, B-52H NMC

SDMODEL EQUATION

REGRESSION 23.015 - 2.61 ABORT -

0.00014 DD - 0.105 MHFH

PRINCIPAL COMPONENT
REGRESSION 17.4043 4 0.345 PI

parameters at a = 0.05. Results of the F-test are

summarized in Table 13. Based on the results of this

analysis, we included the reduced and principal component

R,,•n-•,s,,v models for cns iderntJon =s the final models

to predict B-52H NMC.

Model Testing

Residual Analysis. We examined the residual plots for

each model to determine if error distributions warranted

transformation in any of our models. Residual plots are

included in Appendix G. All of the residual plots appear to

exhibit constant error variance. There are no obvious

quadratic, cubic, or exponential patterns which would

warrant any transformations. Based on these residual plots,

we determined that transformations were not necessary.
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TABLE 13

F-TEST COMPARISON OF FULL AND REDUCED AUTOREGRESSION MODELS

B-52H REGRESSION MODEL

TABLE VALUE

VARIALU TEST STATISTIC ALPHA 0.05

NMC 0.76 2.57

B-52H PRINCIPAL COMPONENT MODEL

TABLE VALUE

VARIADLZ TEST STATISTIC ALPRI = 0.05

NMC 0.64 2.42

Source: McClave and Benson, 1991: 1176 - 1179

Model Validation. The next step in our analysis was

model validation. As mentioned earlier, we left six months

of data out of our models for the purpose of validation.

For the "regular" regression and principal component models,

we selected six random months based on random number table

values. This choice avoids the selection of consecutive

months for model validation however it may mask effects of

autocorrelation. For the B-52H, we used the first two

digits of the random numbers down the first column of the

table. For the KC-135R, we used the last two digits of the
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random numbers across the first row of the table. As a

result, months 7, 9, 10, 22, 24 and 28 were removed from the

B-52H data set, and months 2, 5, 7, 11, 15 and 27 were

removed from the KC-135R data set. For the B-52H NMC

autoregressive model, we removed the first and last three

months of data: months 1, 2, 3, 35, 36, and 37.

In order to validate the models, we compared the 95 and

99 percent model prediction intervals for each dependent

variable with actual values. A summary of validation

results is found in Table 14, and the specific prediction

intervals for each model are found in Appendix I.

For the KC-135R MC regression and principal component

models, five of the six actual values are within the 95

percent interval. At the 99 percent interval, all six

values were within the prediction interval for the

regression model. In the case of the principal component

model, one value was still outside the prediction interval

at 99 percent. This value was for month 2, November 1991.

The actual MC rate was 80.2, below the lower prediction

limit (99 percent interval) of 81.63. However, the MC rate

in November 1991 was the lowest value in our data set. It

was not used to formulate regression models, but was used

only for validation. It seems reasonable that this actual

value could be outside model prediction intervals.

Validation of the KC-135R NMC models was a little

better. For both the regression and principal component

models, five of six values were within the prediction
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interval at 95 percent, and all six values were within the

prediction interval at 99 percent. Once again, the only

value ever outside the prediction interval was month 2,

which also had the highest NMC rate in our data set.

The B-52H MC models produced identical validation

results. Both the regression and principal component models

had five of six values within the prediction interval at 95

TABLE 14

RESULTS OF MODEL VALIDATIONS

VALUES WITHIN PREDICTION INTERVAL

KC-135R 95% 99%

REGRESSION MC 5 6

NMC 5 6

PRIN. COMP MC 5 5

NMC 5 6

B-52H

MC 5 5
REGRESSION

NMC* 6 6

PRIN. COMP MC 5 5

NMC* 6 6

"*" PERFORMED VALIDATION OF AUTOREGRESSION MODELS ONLY
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and 99 percent. This is due to the fact that we once again

randomly selected our "worst" month to use for validation.

Month 24, December 1991, had a MC rate of 64.9 percent, once

again the lowest in Dur data set.

The B-52H NMC models used a different set of months for

validation. Because we used an autoregressive model to

predict NMC rate, we needed to draw our validation data

points in such a way as to not disrupt the time series.

Thus, we chose the first and last three data points in the

set for validation. Using these points, both the regression

and principal component models had six of six points within

the prediction interval at 95 and 99 percent.

Overall, the models appear to be useful in predicting

MC and NMC rates. The only actual values outside the

prediction interval represent the "worst" months for both

aircraft. In all cases, both the regression and principal

component models are useful. However, we must determine

which of these is the best predictive model.

Comparison of Models

We now turn to research question seven: Which

performance model best predicts aircraft maintenance

performance? To answer this question, we perform a

comparison of our aircraft models. For each dependent

variable, we still needed to consider a regression and

principal component model. We based our comparison of these
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models on several factors. These included maximum adjusted

R-square, minimum average prediction error, minimum root

mean square error (RMSE), and minimum probability of the

F statistic being in the rejection region when testing the

usefulness of the model. These factors and model values are

summarized in Tables 15-18. As a result of this analysis,

we chose the regression models as the "best" predictor of

KC-135R MC and MHC rates, and B-52H MC rate. All of these

models had the highest adjusted R-square, lowest average

prediction error, lowest RMSE and the lowest F statistic.

In the case of B-52H NMC, the principal component model is

the best. For this model, we looked at adjusted R-square,

prediction accuracy and RMSE. The principal component model

was slightly better than the regression model in all of

these areas. The adjusted R-square values are less than one

percentage point apart. SSE, RMSE and average prediction

error are all very close. However, overall the principal

component model is slightly better. Based on this, we chose

the principal component model as our "best" model of B-52H

NMC.

Comparison of Performance Eactors

Once we determined which model was best, we then needed

to determine if maintenance performance had actually

improved since the implementation of the Objective Wing
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TABLE 15

COMPARISON OF KC-135R REGRESSION AND REDUCED PRINCIPAL
COMPONENT MODELS (MC)

STAI51 RERSSO DC P

F-STATISTIC 0.0014 0.0083

R-SQUARE 0.4080 0.4705

ADJ. R-SQUAR.E 0.3784 0°3822

SSE 168.0 284.0

ROOT MSE 2.9 2.9

AVG PREDICTION 2.45 3.27
ERROR (ABS VALUE)

TABLE 16

COMPARISON OF KC-135R REGRESSION AND REDUCED PRINCIPAL
COMPONENT MODELS (NMC)

STATISIQJR RUSI REUE D PC/ _

F-STATISTIC 0.0329 0.0873

R-SQUARE 0.3020 0.2264

ADJ. R-SQUARE 0.2285 0.1450

SSE 89.36 99.04

ROOT MSE 2.17 2.28

AVG PREDICTION 2.75 3.33
ERROR (ABS VALUE)
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TABLE 17

COMPARISON OF B-52H REGRESSION AND REDUCED PRINCIPAL
COMPONENT MODELS (MC)

5AITCREQEE~SSJ.Ql REDUCED PC

F-STATISTIC 0.0002 0.0005

R-SQUARE 0.5 0.42

ADJo R-SQUARE 0.4600 0.3803

SSE 513.58 611.14

ROOT MSE 4.36 4.67

AVG PREDICTION 6.03 6.76
ERROR (ABS VALUE)

TABLE 18

COMPARISON OF B-52H REGRESSION AND REDUCED PRINCIPAL
COMPONENT (AUTOREGRESSION) MODELS (NMC)

SIAhISTIC REDUCED REG.

R-SQUARE 0.07 0.05

ADJ. R-SQUARE 0.2708 0.2720

SSE 366.86 366.24

ROOT MSE 3.76 3.62

AVG PREDICTION 4.54 4.38
ERROR (ABS VALUE)
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structure; research question eight. To evaluate this we

first test the independent variables that appear in the

stepwise models. For the B-52H, this includes ABORT, DD,

MHFH and CANN. For the KC-135R, we must test DD, LTO, and

NHFH. Based on the results of normality testing, B-52H DD,

MHFH and CANN are normally disttibuted. ABORT is not

normally distributed. KC-135R MHFH is normally distributed,

however DD and LTO are not. We will use a difference in

means t-test to evaluate differences in the normally

distributed variables and a median test for those that are

not normally distributed.

For both aircraft, the dependent variables (MC, NMC)

are normally distributed, so we use a t-test to evaluate

differences in these variables and model predictions.

For the normally distributed variables, we first compared

the difference in means of the actual maintenance data, then

we compared model predictions based on these data. We used

a difference in means t-test with pooled variance. For all

variables, our test of hypotheses took the form of

Ho: No significant difference in means.

Ha: Significant difference in means.

Test Statistic t Mean (new) - Mean (old)

S+ 1/no, o) ]1/2

Where,

1n.., noId = sample size of new and old samples
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s= Pooled variance
= [ ( (S 2 ... * n,.. ) + (S

2od* nold )) / (old + n...- 2) ]I/2

Rejection Region : ITI > T

We based the cutoff for our 2 samples on the May 1992

implementation of the Objective Wing. We divided our data

set and produced summary statistics for each section. We

then used these statistics to perform the tests of

hypotheses.

The test of actual data revealed that there were

significant improvements at a = 0.1 for B-52H CANN

(decreased), B-52H DD (decreased), B-52H and KC-135R MC

(increased) and NMC (decreased). Results and test

statistics for these tests are summarized in Tables 19 and

22.

For the non-normal variables we used a median test to

determine differences in the samples. However, we chose not

to test the abort rate (ABORT). ABORT was not normally

distributed, thus we could not perform a t-lst. Although

ABORT was included in the B-52H MC model, the rarity of

aborts make it impossibla to perform a meaningful analysis

of any differences. Further analysis would yield

inconclusive and inconsistent results. As a result, our

median test was limited to KC-135R DD and LTO. Results of

these tests are summarized in Table 20, and the complete

test results are included in Appendixc J. For DD, there is a
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TABLE 19

RESULTS OF DIFFERENCE IN MEANS t-TEST (FROM ACTUAL DATA)

(KC-135R)

TABLE VALUE,VRAL ALPHAZ2 = 0, o5 RESU9LT

MC 3.1844 " DIFFERENCE
HHFH -0.1484 " NO DIFFERENCE
NMC -1.7134 DIFFERENCE

Source: McClave and Benson, 1991: 1175

significant difference. The p-value associated with the

chi-square test is 0.0005. This indicates that it is very

unlikely that the samples have the same median. Data under

the pre-1992 structure have 18 values above the median,

while data from the Objective Wing structure have no values

above the median. This leads to the conclusion that the

median for delayed discrepancies has decreased in the

Objective Wing. For LTO, the p-value is 0.6857, indicating

.uat there ---cen..f..-ant da • i the medias.

We next performed a difference in means t-test of model

predictions based on actual maintenance data. We input the

actual values of the independent variables and used model

predictions of Y-C and NMC rates to perform a difference in

means analysis. The results of these analyses are in Tables

20, 22, and 23. In all cases, there wac significant

improvement in HC and NMC rates at a = 0.1.
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TABLE 20

RESULTS OF MEDIAN TEST (FROM ACTUAL DATA)

(KC-135P)

YA-IABiL QVALES -VALJEK BELT

DD 12.00 0.0005 DIFF

LTO 0.16 0.6857 NO DIFF

TABLE 21

RESULTS OF DIFFERENCE IN MEANS t-TEST BASED ON PREDICTED

VALUES FROM REDUCED REGRESSION MODEL

(KC-135R)

MAUT V 17X.T TT

SAEASL T STATISTIC ALPHA!2 =0
MC 4.42 1.706

NMC -3.36 1.706

Source: McClave and Benson, 1991: 1175
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TABLE 22

RESULTS OF DIFFERENCE IN MEANS t-TEST (FROM ACTUAL DATA)
(B-52H)

TABLE VALUE,
Y TESTZ&I.. ALPHA/2 = 0.05 RESULT

CANN -3.4586 1.690 DIFFERENCE

DD -4.6759 " DIFFERENCE

MC 2.9861 " DIFFERENCE

MHFH 1.3659 " NO DIFFERENCE

NMC -2.1983 " DIFFERENCE

Source: McClave and Benson, 1991: 1175

TABLE 23

RESULTS OF rIFFERENCE IN MEANS t-TEST BASED ON PREDICTED
VAL(JES FROM REDUCED REGRESSION MODELS

(B-52H)

TABLE VALUE,

YAR L •TEST• ZALPHA/2 = 0.05

MC 3.50 1.690

Source: McClave and Benson, 1991: 1175

60



TABLE 24

RESULTS OF DIFFERENCE IN MEANS t-TEST BASED ON PREDICTED
VALUES FROM REDUCED PRINCIPAL COMPONENT (AUTOREGRESSION)

MODEL (B-52H)

TABLE VALUE,

V TEST STATISTIQ ALPHA/2 = 0.05

NMC 3.36 1.690

Source: McClave and Benson, 1991: 1175

Summary

This chapter presented the results of our research

methodology to answer research questions five through eight.

To answer research question five, we discussed the

attributes of our data set including the results of tests

for normality and randomness and their implications. To

answer research question six, we presented the process we

used to develop our performance models and criteria for

model evaluation and validation. We performed a comparison

of the performance models to answer question seven and chose

a best model for each dependent variable. Finally, we

answered research question eight by discussing the results

of comparisons of actual performance data from both

organizational structures and model predictions based on

these data.

In Chapter V we will discuss conclusions based on our

research effort, further elaborate on the implications of
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our results, and provide some recomiendations for further

research.
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V. Conclusions and Recopl na

Introduction

This chapter discusses conclusions and recommendations

based on the research effort. We provide answers to the

research questions, including a discussion of conclusions

and implications of our research. Finally, we give some

recommendations for future research.

In this section we provide answers to our research

questions and discuss the implications of our research.

Research Ouestion 1. What analytical methods have been

used in the past to create performance models?

A literature review unearthed several previous theses

that included development of aircraft maintenance

performance models. Table 1, page 17 summarizes these

research . .. .... . The * J. --- oU'Jen LJJ.t. -W-- .... _ -^-L a... rLWs n

analysis.

Research Ouestion 2. What dependent variables best

represent aircraft maintenance performance?

We answered this question based on our literature

review. Previous researchers used methods such as surveys

(Gililland), regulations (Jung), expert opinions and

personal experience to determine the most meaningful
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dependent variables. We reviewed the factors most often

used (Appendix A) and determined that Mission Capable Rate

and Total Not Mission Capable Maintenance Rate were the most

widely used dependent variables.

Research Questigon3. What independent variables affect

aircraft maintenance performance?

Again, we answered this question based on our

literature review. Based on the variables used by previous

researchers and variables reported in the monthly

maintenance summaries, we chose nine independent variables

for our analysis. Stepwise regression further narrowed

these down. Each aircraft model had different variables.

Delayed discrepancy rate (DD) appeared in both aircraft MC

models, however, the B-52 model also included the abort rate

and manhour per flying hour (MHFH). The NMC models included

totally different variables. The B-52 model included

cannibalization rate (CANN) while the KC-135 model included

the late takeoff rate (LTO) and MHFH. Once again, each

aircraf .. y..- disp.Laye~u Ud1ffJ1I1-- VCL±l-GL J.O LaLnsAA.LjJp.

There is no one universal aircraft maintenance performance

model.

Bg~IL.QUgsji.oJgA. What problems exist in previous

researchers' models and how might these deficiencies be

corrected?

The main problems exhibited in previous models were

seasonality or autocorrelation, nonnormality, and

correlation of variables. We tested all variables for
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normality, and tested the dependent variables for

autocorrelation. We used nonparametric tests to evaluate

nonnormal variables, and used an autoregressive model to

correct for autocorrelation in the dependent variable, B-52H

NMC. We performed regression of principal components in an

attempt to eliminate correlation of independent variables.

Research Ouestion 5. Which analytical method is the

most appropriate to model aircraft maintenance performance?

We expanded the use of regression models to include a

regression model based upon the principal components of the

independent variables. In most cases, the principal

component model was not a better predictor of performance

than regression models. In 'the case of B-52H Total Not

Mission Capable Maintenance Rate (NMC), the principal

-.omponent regression model was only a slightly better

predictor than the regression model. Additionally, we saw

that an autoregressive model was more useful for this

variable. In general, it seems that the answer to this

question is "it depends."i The attributes of the data set

dictate which type of model is best. Autocorrelation leads

to an autoregressive model, while high correlation between

independent variables may warrant use of principal

components. There is no universal "one best method."

Research Ouestion Are reqression and principal

component models useful for predicting aircraft maintenance

performance?
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Our analysis of both types of models shows that both

can be considered useful. Adjusted R-square values for our

performance models ranged from 0o14 to 0.46. We did not

have a perfect fit of our performance data, but we saw a

moderate to good fit of the models to the data. Residual

plots were as expected, with no obvious quadratic,

exponential or cubic patterns. Validation results for all

models indicate that with the exception of extremely low MC

rates, the model predictions closely approximated actual

performance measures.

Research Ouestiorn2. Which performance model best

predicts aircraft maintenance performance?

We focused on regression models, specifically

regression of maintenance independent variables, regression

of their principal components and autoregressive models.

For B-52 MC, KC-135 MC and NMC, reduced regression models of

the independent variables were the best predictors. For

B-52 NMC, an autoregression of principal components was

best. Once again, the data themselves are going to dictate

the type of model that is appropriate.

Research Question 8. Do significant statistical

differences exist in aircraft maintenance performance in the

Objective Wing and pre-1992 organizational structures, and,

if so, what are they?

In our analysis, we looked at a difference in means of

eight of the independent variables, both dependent variables

and the model predictions of the dependent variables. We
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found significant improvement in five variables:

cannibalization rate (CANN), delayed discrepancy rate (DD),

scheduling effectiveness (EFFEC), mission capable rate (MC)

and Total Not Mission Capable Maintenance Rate (NMC). For

both aircraft types CANN, DD and NMC decreased, while EFFEC

and MC increased. Model predictions were also significantly

different. Model predictions for MC and NMC showed

significant improvement.

Conclusions and Iplications

The most significant conclusion of our research is that

performance has in fact improved since the Objective Wing

structure was implemented at Fairchild AFB. For both

aircraft types, dependent variables MC and NMC improved.

Howe rer, other factors such as the stand-down of the Alert

Force in October 1991 may also have influenced these

performance factors.

Another important conclusion concerns model building.

Performance models are always a function of the data set

used to build them. It is vitally important to evaluate the

attributes of the data set to build a good model. There are

many "statistical pitfalls" that a researcher must correct

for, such as autocorrelation and correlation of independent

variables. Each data set will exhibit different

charazteristics. There is no universal performance model.
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The results of this research support the view that

reorganization of Air Force Wings into a more organic,

decentralized structure may have in fact improved

performance, just as it has in the business world. The Air

Force has responded to a changing environment by

reorganizing into a more flexible structure. It seems we

have enhanced defense capability despite less manpower and

other resources.

Recommendations for Further Research

There are several aspects of this topic that may

warrant further research. These areas include:

... T effec of other UL sVclh a..... the Alert Force

stand-down on maintenance performance. This event occurred

just before the implementation of the Objective Wing. A

study comparing wings with and without alert commitments or

a study solely based on aircraft without an alert commitment

may be worthwhile.

2. Sample size under the Objective Wing: further

research could encompass two maintenance performance models,

one based on the "old" structure and another based on the

Objective Wing. We had only nine months of Objective Wing

data available for our analysis. With time, a larger data

set will be available and more extensive analysis could be

performed.
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3. A study of other aircraft types: we focused solely

on B-52H and KC-135R aircraft. Has the Objective Wing

structure improved performance in fighter wings, for

example? Or conversely, has performance improved in wings

that have not adopted the Objective Wing structure such as

Air National Guard units or former Military Airlift Command

units? Will different performance models and data sets

produce different results?

4. A study that incorporates the effects of operations

Desert Shield and Desert Storm. How did these events affect

performance prior to Objective Wing implementation? Did

Desert Shield/Storm skew pre-1992 data?

5. A study on the effects of the Objective Wing on

other base agencies, such as the maintenance, operations or

weather squadrons. Has performance improved in these units?

6. A qualitative study of the behavioral aspects of

Objective Wing implementation. For example, has job

satisfaction increased for maintenance personnel assigned to

7. A study on maintenance data as a time series. We

brushed the surface of time series analysis with this

thesis. Are there more powerful and or more appropriate

time series techniques that will build a better model?
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This research explored the effects of the Objective

Wing structure on aircraft maintenance performance. We

reviewed literature on organizational change and on

performance modelling, developed performance models based on

regression and principal component analysis, and performed

comparisons of actual performance data and maodel predictions

with a difference of means t-test. We found that there were

significant improvements in ma-4ntenance performance since

the implementation of the Objective Wing structure. We

presented our conclusions and some implications of our

research~. We provide recommendations for further research

to better aflalyze the true ef tects- of thj:- nh-*ide- ixc i~ t q an

wing performance.
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Appendix A! Ai-rcraft Maintenance Performance Factors

(INDEPENDENT (1) FACTORS USED IN PREDICTING DEPENDENT (D) FACTORS)

Aircraft Mantenance Performance Facor R-I _h s)
Davis & Jung Gililland Diener &
Walker {Hood

-. (1992) (1991) (1990) (1980)
Air Aborts / Maintenanice Air Aborts I / / D
Air Abort Rate i I
Aircraft a•arks l

Aircraft Break Rate I i _ ......
-Aircraft Fix Pate I
Aircraft Hourly Utilizaqtion Rate

Aircraft Sortie Utilization Rate I _

Aircralt Sortie Dturalion I
Average Hours Per h~lvH!ction D
A.verave Turn Time D

jA!wa.ng MN~a~enaqc:'. Duiscrtces_ __ ____ ___

AWunPa_.•ft r isan5 U1SCPani _

Base Self Sufficiency !

C.1,illations I
Canctilation Rate !

Cannibalizations I
C.nnibal.zaauon Rate l_ _.I _

Direct Labor Raie D
Enr.ae Ldaboir Rali_ D
Full Mission Caoabl RaiteMC Rate /D 1 1/D /D D/
Ground Atboa Rate D

Home St•u.on_.teiabiihv__ D
FI qW iH~urs AIlocaw.d1 - I
Hours Flov'n I__ I____I____ ___

, -ou, Fklwn •. Aýiocat(:4 I
VC Take-offs.
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Appendix A: Aircraft Maintenance Performance Factors

(Continued)

(INDEPENDENT (1) FACTORS USED IN PREDICTING DEPENDENT (D) FACTORS)

Aircraft Maintenanc Pgrformanm _ Factor - .B r~lbg is)E.D..
Davis a Jung Gililland Docod &
Walker wlood

__ _ (1092) (1991) (1990) 1(19801___

Maintenance Scheduling Effectiveness D_,__
Manhours Expcndcd _ I
Manhours Per Sortie _ _ I

Maintenance Manhours Per Flying Hour I I D D
Mean Skill Levcl of Maintenance Personnel [

Not Mission Capable Rate / NMC Poth Rate i / 1 /1!
NMC Maintenance Rate i /NMCM) /I 1/ I D I

NMC Supply Rate/(./NMCS) _ / I I
Number of Aircraft Fixed in 18 Hours I

Number of Personnel Authorized Per Aircraft I

Number of Pesonnel A n vs.Auihotzcd -!

Partial Massion CpL Rate
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Appendix B: Data Sets and Time Series Plots

1. B-52H

Month CANN LTO DD CANX KHFH MHS AVPOS ABORT EFFEC MC NMC

Jan 90 1.1 4.8 18.2 1.5 76.2 444.3 18.4 0 96.7 76.6 21.7
Feb 90 0.8 8.8 17.3 2.6 60W5 392.9 18.0 0 97.7 78.4 19.7
Mar 90 0.7 8.3 15.1 2.6 49.0 262.2 18.7 0.8 95.4 82.3 13.7
Ap' 90 0.4 10.4 16.8 1.8 49.6 306.3 17.7 0.9 98.2 77.3 17.8
May 90 0.2 12.0 15.7 1.0 44.7 277.8 18 1.6 98.4 83.8 12.7
Jun 90 0.5 5.2 19.6 1.8 54.3 305.4 17.1 0 99.1 79.9 15.9
Jul 90 0.9 1 18.4 5.7 77.5 393.8 18.4 0 97.6 77.0 18.1
Aug 90 .3 5.9 20.5 4.1 29.8 182.6 17.6 0 96.0 72.1 21.2
Sep 90 1.3 6.0 20.0 0.0 67.5 434.5 18.1 0 98.4 79.3 16.2
Oct 90 .5 6.8 22.4 3.8 46.9 255.9 17.7 C 97.4 79.5 16.2
Nov 90 1.4 20.5 21.9 3.4 39.4 239.2 18.0 0 97.2 74.3 19.1
Dec 90 .8 25.3 18.8 2.4 34.4 177.6 18.9 0 94.1 67.2 23.5
Jan 91 1.Z 17.6 21.5 8.8 53.2 282.3 18.9 0 96.9 73.6 106.1

Feb 91 .68 15.1 22.5 1.1 36.4 204.? 19.0 0 99.1 62.4 15.3
Mar 91 1.15 9.3 21.8 4.4 52.3 282.1 19.0 0 95.6 70.1 15.6
Apr 91 .95 6.5 18.9 2 49.6 292.2 19.0 0 93.1 81.7 !2.8
May 91 .52 5.0 13.8 1.6 46.3 239.3 18.0 0.8 98.5 80.6 13.6
Jvn 91 .74 4.4 15.3 3.4 45.6 278.5 18.0 1.8 96.7 78.3 14.7
,Jail 91 .85 12.3 17.8 4 54.9 237.3 18.0 0 96.1 72.2 12.7
Auq 91 .71 16-2 18.4 5.3 46.0 271.1 16.0 0 95.0 76.6 18.9
Sep 91 .9? 13.2 16. 7.4 55.0 303.1 17.0 0 92.9 77.7 19.6
Oct 91 .8 6.5 12.6 3.2 44.5 296.7 14.0 0 96.9 73.6 22.1
Noy 91 .66 3.3 11.1 0 41.1 270.2 14.0 0 100 71.4 23.7
Dec 91 .64 11.4 9.9 2.5 63.4 322.5 14.0 0 97.6 64,9 27.1
Jan 92 .73 7.1 4.6 2.9 65.1 390.2 14.3 0 90.8 75.3 17.5
Feb 92 .7 12.6 4.9 5.3 50.3 289.0 14.0 0 83.2 80.0 14.6
Nair 92 .7 7.7 4.6 0 59.2 277.1 15.0 0 92.6 78.4 17.0
Apr 92 1.26 6,0 4.9 2.4 60.5 300.0 13.8 0 92-3 73.9 10.8
May 92 .4 6.0 6.5 0 51.8 356.5 13.6 0 93.4 88.3 10.6
Jun 92 .44 2.0 7.2 0 52.9 293.4 14.5 0 97.0 78.4 20.7
Jul 92 .47 12.9 4.8 6.9 50,0 342.1 14.9 0 82.2 76.3 22.3
Aug 92 .57 2.8 7.5 1 70.4 411.8 14.9 0 96.4 i 16.4
Sep 92 .5 7.1 6.3 1.2 68.5 396.6 16.2 0 91.7 81.6 13.0
Oct 92 .34 6.6 6.5 4.5 59.9 326.1 15.1 0 91.0 84.1 11.5
Nov 92 .61 4.8 6.2 1.2 62.2 348.1 16.0 0 94.1 80.2 8.5
Dec 92 .26 18.2 6.6 2.6 63.2 321.4 16.0 0 78.2 81.0 12.0
Jan 93 .1 7.2 7.1 4 42.8 243.2 15.4 1.4 10.3 86.7 9.5
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Time Series Plot of CAElN
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T'we Series Plot of DD
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Time Seriea Plot of LTO
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Time Series Plot of W-11T-
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Time Series Plot of NMC
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2. KC-135R

Month MC NMC ABORT MHS MHFH CANN LTO CANX DD AVPOS EFFEC

Oct 90 89.0 7.2 0.0 97.9 23.9 .07 6.60 3.1 06.21 6.0 97.7
Nov 90 80.2 13.4 0.0 108.2 34.7 .13 4.20 7.1 10.24 8.5 95.9
Dec 90 83.3 12.1 0.0 63.50 18.9 .23 9.80 1.8 10.85 12.9 97.7
Jan 91 87.8 10.2 0.0 66.1 15.4 .27 1.50 0.0 11.91 14.1 100
Feb 91 87.3 05.5 0.0 72.50 13.9 .26 2.10 0.0 8.800 16.0 100
Mar 91 81.9 11.4 0.0 89.60 22.5 .19 4.30 0.0 9.500 15.0 100
Apr 91 87.8 6.79 0.0 126.0 35.8 .17 1.90 0.9 13.3 15.0 98.2
May 91 87.5 6.04 0.7 104.7 27.6 .12 0.00 1.3 10.5 18.0 98.7
Jun 91 87.5 05.6 0.0 110.4 34.3 .15 3.40 0.0 11.20 21.0 100
Jul 91 83.5 07.5 1.8 124.6 35.3 .25 5.40 0.0 11.00 21.0 100
Aug 91 83.6 12.3 0.7 127.2 31.1 .11 5.00 3.5 11.20 24.0 96.9
Sep 91 86.7 10.0 0.0 159.6 43.3 .15 10.3 1.9 13.30 24.0 98.3
Oct 91 88.5 06.6 0.0 150.6 39.4 .09 3.00 1.3 10.80 21.0 98.8
Nov 91 82.2 10.0 0.0 148.2 44.1 .08 3.00 0.6 10.40 23.0 99.4
Dec 91 89.0 08.2 0.0 142.1 42.8 .17 3.00 0.8 9.300 23.0 99.3
Jan 92 89.3 07.8 0.0 143.1 36.7 .31 4.10 0.0 6.400 20.1 95.9
Feb 92 91.9 07.1 0.7 124.3 30.9 .16 3.70 0.0 7.000 21.1 96.4
Mar 92 92.9 05.8 0.0 124.3 28.1 .16 3.50 0.0 5.500 19.5 96.6
Apr 92 87.8 10.7 0.0 135.1 26.3 .14 2.50 1.7 5.500 19.1 96.0
May 92 87.2 10.8 0.0 108.3 30.1 .08 4.10 0.7 5.800 19.4 95.3
Jun 92 93.3 04.1 0.7 76.50 20.1 .07 3.00 2.0 7.500 19.6 96.1
Jul 92 94.2 04.8 0.0 142.6 38.9 .05 0.70 1.5 4.600 21.3 98.1
Aug 92 92.8 06.2 0.0 112.4 25.6 .07 2.00 3.9 4.500 21.5 94.6
Sep 92 90.9 04.2 0.0 180.4 40.0 .26 0.90 2.1 3.700 21.7 97.4
Oct 92 88.4 07.4 0.0 115.8 30.3 .06 5.40 0.7 5.900 19.7 93.9
Nov 92 93.9 05.4 0.0 134.1 34.6 .03 4.30 0.9 6.400 21.8 94.3
Dec 92 89.7 09.0 0.0 144.1 32.4 .21 4.00 0.0 6.500 21.2 96.1
Jan 93 87.5 10.1 1.4 91.30 20.5 .10 3.40 0.7 7.100 19.2 95.2
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Time Series PIot of CANN
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Time Series Plot of DD
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Time Series Plot of LTOC
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Time Series Plot of M=
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Time Series Plot of IMC
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Appendix C: Rankit Plots

1. B-52H

Wilk-Shapiro / Rankit Plot of ABORT
2.0-

1.0 --

+
1.5

+

• ~+4.-

0.5-

0.0- + + + +4-it ifttiIW4+-14i-+4

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Rankits
Approximate Wilk-ý;hapirc 0.4613 37 cases
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Wilk-Shapiro/ Rankit Plot of AVPOS
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Wilk-Shapiro / Rankit Plot of CANX
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Rankits
Approximate Wilk-Shapiro 0.9453 37 cases

Wilk-Shapiro / Rankit Plot of DD
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Wilk-Shapiro / Rankit Plot of EFFEC
101
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+
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Wilk-Shpiro / Rankit Plot of MC
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Wilk-Shapiro / Rankit Plot of MHFH
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Wilk-Shapiro / RankiL PIoL of MHS
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Wilk-Shapiro / Rankit Plot of NMC
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2. KC-135R

Wilk-Shapio / Rankit Plot of ABORT
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Wilk-Shapim / Rankit Plot of AVPOS
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Wilk-Shapiro /Rankit Plot of CANX
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Wilk-Shapiro / Rankit Plot of EFFEC
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Wilk-Shapiro / Rankit Plot of MC
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Wilk-Shapiro'i Rankit Plot of MHS
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Appendix 0: Autocorrelation Pluot of Dependent Variables

1. B-52H

AUTOCORRELATION PLOT FOR MC

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
LAG CORR. I I . I -

1 0.447 > mu.muuI
2 0.238 >
3 0,155 >
4 0.167 >
5 -0.002 >
6 0.042 >
7 0.016 >
8a 0.044 >
9 -0.077 >E•!

10 0.008 >
11 -0.047 >

MEAN OF THE SERIES 77.5000
STD. DEV. OF SERIES 5.83609
NUMBER OF CASES 37

AUTOCO.RELATION PLOT FOR NMC

-1.0 -0.8 -0.6 --0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
LAG CORR. .I I.... I_ ..L.... I I

1 0.514 >
2 0.154 >
3 -0.017 >
4 -0.199 > <
5 -0.329 ;). <
6 -0.150 > <
7 -0.008 > <
8 0.050 > Kim e
9 0.082 > <

10 0.072 > R1 <
13 0.012 > t <

MEAN OF THE SERIES 16.6O54
STD. DEV. OF SERIES 4.32234
NUMBER OF CASES 37
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2. KC-135R

AUTOCORRELATION PLOT FOR MC

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
LAG CCRR . I I I I . L . I I I f

1 0.413 >
2 0.188 > <
3 0.287 > <

4 0.400 > <
5 0.265 > <
6 0.117 > <
7 -0.088 > <
8 0.199 >
9 0.103 > <

10 -0.087 > <

MEAN OF THE SERIES 88.1000
STD. DEV. OF SERIES 3.66820
NUMBER OF CASES 28

AUTOCORRELATION PLOT FOR NNC

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
LAG CORR. -I L I I , I I

1 0.215 > <
2 -0.066 > <
3 -0.016 > <
4 0.023 > <
5 -0.024 > <
6 -0.235 > <
7 -0.211 > <
8 0.356 >
9 0.216 > <

10 -0.171 > <

MEAN OF THE SERIES 8.08714
STD. DEV. OF SERIES 2.56952
NUMBER OF CASES 28
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Appendix E: Results of Stepwise Regression

1. B-52H

The SAS Systel

Stepwise Procedure for Dependent Variable MC

Step 1 Variable DD Entered R-square = 0.34133540 C(p)=4.08904153
E

DF Sum of Squares Mean Square F Prob>F

Regression 1 360.68757348 360.68757348 15.03 0.0006
Error 29 696.00791039 24.00027277
Total 30 1056.69548387

Parameter Standard Type II
Variable Estiiate Error Sun of Squares F Prob>F

INTERCEP 85.31408537 2.07198756 40689.59510732 1695.38 0.0001
DD -0.54427003 0.14039671 360.68757348 15.03 0.0006

Bounds on condition number: 1,

StAe 2 Variahle La M" _tpred R-marep 0f4318950) C(p) = 165911777

DF Suz of Squares Kean Square F Prob>F

Regression 2 459.86277572 229.93138786 10.79 0.0003
Error 28 596.83270815 21.31545386
Total 30 1056.69548387

Parameter Standard Type II
Variable Estimate Error Sun of Squares F Prob>F

INTMECEP 84.61785542 1.97915616 38963.54706389 1827.95 0.0001
am 3.49437726 i.62000194 99.17520224 4.65 0.0597
DD -0.55374812 0.13238400 372.94788218 17.50 0.0003

Bouns on condition number: 1.001103, 4.004412

Step 3 Variable IME Entered R-square = 0.51397838 C(p) -0.05972614

DF SuN of Squares Men Square F Prob>F

Regression 3 543.11863221 181.03954407 9.52 0.0002
Error 27 513.57685166 19.02136438
Total 30 1056.69548387
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Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 73.19451974 5.7139232 3059.40951960 160.84 0.0001
ABORT 4.46461155 1.59906944 148.27720337 7.80 0.0095
DD -0.42369804 0.13965466 175.08288273 9.20 0.0053
MNHF 0.18157683 0.08679084 83.25585649 4.38 0.0460

Bounds on condition nunber: 1.349294, 11.07235

All variables left in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the model.

The SAS System

Sunmary of Stepwise Procedure for Dependent Variable MC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 C(p) F Prob>F

I DD 1 0.3413 0.3413 4.0890 15.0285 0.0006
2 ABORT 2 0.0939 0.4352 1.6591 4.6527 0.0397
3 KHFH 3 0.0788 0.5140 -0.0597 4.3770 0.0460
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The SAS Systei

Stepwise Procedure for Dependent Variable NNC

Step 1 Variable CANN Entered R-square = 0.11877842 C(p) = 1,55849672

DF Sun of Squares Nean Square F Prob>F

Regression 1 60.67876005 60.67876005 3.91 0.0576
Error 29 450.17801415 15.52337980
Total 30 510.85677419

Parameter Standard Type II
Variable Estimate Error Sun of Squares F Prob>F

INTERCEP 13.20454178 1.69737027 939.46319769 60.52 0.0001
CAINN 4.60814838 2.33077981 60.67876005 3.91 0.0576

Bounds on condition number: 1, 1

All variables left in the nodel are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

Sun•ary of Stepwise Procedure for DeDendent Variable NHC

Variable Number Partial Hodel
Step Entered Reuoved In R**2 R**2 C(pO F Prob>F

1 CAINN 1 0.1188 0.1188 1.5585 3.9089 0.0576
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2. KC-135R

The SAS Systea

Stepwise Procedure for Dependent Variable HC

Step 1 Variable DD Entered R-square m 0.40800640 C(p) -2.99600845

DF Sum of Squares Mean Square F Prob>F

Regression 1 116.24695864 116.24695864 13.78 0.0014
Error 20 168.66758681 8.43337934
Total 21 284.91454545

Parateter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCP 95.19840377 1.89588915 21263.51638191 2521.35 0.0001
DD -0.83365542 0.22454149 116.24695864 13.78 0.0014

Bounds on condition number: 1, 1

All variables left in the okl are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

ummary of Atepwise Procedhire for Depen Variable IC

Variable Nuber Partial "odel
Step Entered Resoved In R*2 R**2 C(p) F Prob>F

1 DD 1 0.4080 0.4080 -2.9%0 13.7841 0.0014
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The SAS Systen

Stepwise Procedure for Dependent Variable N1C

Step I Variable LTO Entered R-square = 0.21690024 C(p) = -0.95171503

DF Sun of Squares Mean Square F Prob>F

Regression 1 27.76829449 27.76829449 5.54 0.0289
Error 20 100.25505097 5.01275255
Total 21 128.02334545

Parazeter Standard Type II
Variable Estinate Error Sun of Squares F Prob>F

INTERCEP 6.03608867 0.87944749 236.13896749 47.11 0.0001
LTO 0.45048350 0.19140021 27.76829449 5.54 0.0289

Bounds on condition number: 1, 1

Step 2 Variable MHFH Entered R-square = 0.30198917 C(p) = -0.80412307

DF Sum of Squares Mean Square F Prob>F

Regression 2 38.66166370 19.33083185 4.11 0.0329
Error 19 89.36168175 4.70324641
Total 21 128.02334545

Paraneter Standard Type II
Variable Estinate Error Sum of Squares F Prob>F

INTERCEP 8.68924331 1.94033065 94.32138308 20.05 0.0003
LTO 0.45204683 0.18540004 27.96050130 5.94 0.0248
NBFH -0.08773565 0.05764927 10.89336922 2.32 0.1445

Bounds on condition number: 1.000031, 4.000123

All variables left in the model are significant at the 0.1500 level.

No otber variable net the 0.1500 significance level for entry into the model.

Summary of Stepwise Procedure for Dependent Variable NNC

Variable Number Partial Model
Step Entered Removed In R**2 R**2 C(p) F Prob>F

1 LTO 1 0.2169 0.2169 -0.9517 5.5395 0.0289
2 MIFH 2 0.0851 0.3020 -0.8041 2.3161 0.1445
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Appendix F: Principal Component Information

1. B-52H

Correlation Matrix

AORT APOS CUM CANX DD EFFEC LTO WU MRS
AM 1.0000 0.2085 -. 3535 -. 0750 0.0332 0.1818 -. 1505 -. 2752 -. 2263
AVPOS 0.2085 1.0000 0.4597 0.1660 0.8560 0.4370 0.3472 -. 2630 -. 3453
CAD -. 3535 0.4597 1.0000 0.3223 0.5322 0.2616 0.3262 0.0744 0.0210
CANl -. 0750 0.i660 0.3223 1.0000 0.2148 -. 3304 0.4517 -. 1206 -. 1379
DD 0.0332 0.8560 0.5322 0.2148 1.0000 0.6022 0.3571 -. 4368 -. 4332
EFFEC 0.1818 0.4370 0.2616 -. 3304 0,6022 1.0000 -. 2556 -. 2325 -. 1836
LTO -. 1505 0.3472 0.3262 0.4517 0.3571 -. 2556 l.O00 -. 3483 -. 4115
WRPE -. 2752 -. 2630 0.0744 -. 1206 -. 4368 -. 2325 -. 3483 1.0000 0.9102
MRS -. 2263 -. 3453 0.0210 -. 1379 -. 4332 -. 1836 -. 4115 0.9102 1.0000

Eigenvectors

PRINI PRIN2 PRIM3 PRIN4 PRIN5

AMORT 0.082886 -. 485319 -. 100186 0.725669 0.053628
AVPOS 0.444383 0.030070 0°242909 0.318926 0.365222
CMa 0.266110 0.45M4-• 0.3304177 -. 066414 -. 178319
CAIX 0.175191 0.429578 -. 308294 0.426166 -. 627153
DD 0.493767 0.038847 0.250791 0.022,74 0.006JA7
EFFEC 0.255842 -. 314219 0.516046 -. 157039 -. 254802
LTO 0.302864 0.346246 -. 35752f -. 048613 0.563253
HUH -. 374377 0.303889 0.363619 0.280571 0.219112
aRs -. 391154 0.251297 0.370749 0.281770 0.091495

PRIN6 PRIE7 PRIM8 PRIM9

i T... 0.430452 0f036l21 -.0800H 0!.5380
AVPOS -. 342670 -. 377592 0.174361 -. 465954
CAD 0.673116 -. 342362 -. 099076 0.015247
CANIX -. 210188 0.182691 0.166916 -. 0%804
DO -. 347159 0,136281 -. 422137 0.611504
FUFEC 0.108498 0.547771 0.354860 -. 205357

LTO 0.247080 0.519588 0.093341 -. 034816
MM -. 062419 0.01961 0.545102 0.454246
MKS -. 044763 0.341380 -. 561734 -. 352900

106



Principal Components:

Prini Prin2 PriD3 Prin4 prigS Prin6 Prin Prin8 Prin9

-0.8420 1.4520 3.3530 0.8650 0.5380 -0.1060 -0.2120 -0.3030 0.1940
-0.0518 0.7470 1.8030 0.3590 0.2730 -0.4040 0.4500 -0.3180 -0.3000

1.0560 -0.8770 0.1970 0.8090 0.1970 0.1180 -0.5950 0.1990 -0.1270
0.5950 -1.4230 0.3260 0.7920 0.5460 -0.1600 0.6620 -0.1180 0.0038
0.9040 -2.6900 -0.3290 1.4330 1.0280 0.1860 0.7880 -0.0778 -0.0118
0.2110 -0.6760 1.2120 -0.4450 -0.1950 -0.%20 0.2970 -0.0307 0.3620
1.9090 -1.4580 -1.1270 -0.9660 -1.0770 -1.5530 -0.3520 -0.1820 -0.0361
3.1730 1.3500 0.1090 -0.9200 0.2470 1.3240 0.1130 -0.3230 0.0353
3.2170 0.3800 -1.5440 -1.1810 1.5020 0.3250 0.2080 0.2380 -0.2610
2.7850 2.6610 0.2370 0.8820 -0.9600 0.1920 0.4230 0.4860 -0.0990
2.7930 -0.7980 0.0475 -2.2690 0.7690 -0.4070 0.0380 -0.0069 -0.0830
1.8790 1.1410 1.0730 0.1790 -0.3980 -0.1420 -0.6960 -0.0784 0.1540
1.0490 0.3140 0.9670 -0.1720 0.1950 -0.3600 -1.2130 -0.4510 -0.0818
0.7610 -1.9150 0.2960 0.2860 -0.1380 -0.0193 -0.4530 0.4250 -0.1270
1.0280 -i.9600 0.2080 2.1980 -0.5950 0.9480 -0.4890 -0.2810 0.0835
1.0920 0.8320 0.4930 0.0235 0.0145 -0.2250 0.0948 0.3270 0.0785
1.2030 0.8680 -0.8230 -0.3640 -M.4530 -0.0404 0.9100 -0.0980 0.3290
0.8470 1.8840 -0.3830 0.6380 -0.9140 -0.1650 0.3000 0.2100 0.1030

-0.6040 -1.5810 0.4310 -1.9250 -0.9840 0.6630 0.1590 -0.2920 0.0526
-2.5840 1.0070 0.2270 0.0597 -0.2760 0.5700 0.1580 -0.0476 -0.0635
-1.4200 1.4120 -2.3840 -0.1760 -0.5120 0.5640 -0.4260 -0.2150 0.1410
-1.6380 -0.2720 -0.0216 -1.0790 0.3870 0.8250 -0.5620 0.6440 0.1750
-2.3780 -0.7750 -0.0610 -1.U30 0.0259 0.2720 0.4500 -0.5730 -0.0671
-1.7490 -1.3840 0.4240 -1.2840 -0.4610 0.0862 -0.0857 0.2540 0.0406
-1.6250 1.6800 -2.5550 0.5960 -0.4940 -0.3000 -0.0299 -0.4750 -0.4530
-2.7630 0.0591 1.6650 -0.0528 -0.0950 0.0087 0.4480 0.1300 0.0379
-2.4220 0.4520 0.7870 0.2210 0.7610 -0.2370 0.0438 0.1530 -0.2630
-1.8880 0.3270 -0.7260 0.1780 -0.5940 -0.6290 0.2150 0.4540 -0.0518
-1.8680 -0.0522 0.7680 -0.2730 0.1060 0.0716 -0.2620 0.3400 -0.2980
-1.9830 1.4430 -2.3780 0.3570 2.0390 -0.5860 -0.3750 -0.0756 0.4150
-0.6840 -2.1500 -2.2930 1.3420 -0.4830 0.1410 -0.0090 0.0844 0.1170
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2. KC-135R

Correlation Matrix

AWORT APOS CAN CANX DD EFFEC LWO MFH MRS

ABORT 1.0000 0.1082 0.1054 -. 2204 0.1646 0.0701 -. 0472 -. 1531 -. 1904
AVPOS 0.1082 1.00" -. 1130 -. 1833 -. 0359 -. 1636 -. 2223 0.6708 0.6453
CAMW 0.1054 -. 1130 1.0000 -. 3786 0.2688 0.4014 0.1020 -. 0714 -. 0124
CANIX -. 2204 -. 1833 -. 3786 1.0000 -. 3063 -. 2791 0.0667 -. 0786 0.0485
DD 0.1646 -. 0359 0.2688 -. 3063 1.0000 0.7076 0.3771 0.0312 -. 2292
EFFEC 0.0701 -. 1636 0.4014 -. 2791 0.7076 1.0000 -. 0176 0.1342 -. 0445
LTO -. 0472 -. 2223 0.1020 0.0667 0.3771 -. 0176 1.0000 0.0055 -. 1315
M -. 1531 0.6708 -. 0714 -. 0786 0.0312 0.1342 0,0055 1.0000 0.9057
MRS -. 1904 0.6453 -. 0124 0.0485 -. 2292 -. 0445 -. 1315 0.9057 1.0000

Principal Component Analysis

Eigenvectors

PRINI PRIN2 PRIN3 PRIN4 PRIN5

aO -. 137553 0.143605 -. 552969 0.585655 0.103354
AVPOS 0.476044 0.225558 -. 217604 0.266823 0.011033
CAN -. 198304 0.370162 -. 079252 -. 355871 -. 605278

CAXX 003501 - .422609 .395160, 0.038526 0394
DD -. 276105 0.476881 0.240389 0.231151 0.320406
EFRC -. 210907 0.493978 0.131611 -. 304307 0.462722
LTD -. 176048 0.081486 0.590585 0.548279 -. 430774
Nun 0.501785 0.322370 0.209507 0.052176 0.048658
MHS 0.551736 0.198097 0.129030 -. 091209 -. 096607

PRIN6 PRII7 PRIN8 PRIN9

ABORT 0.487712 -. 248397 -. 036329 -. 011164
AVPOS -. 144802 0.636019 0.408271 0.108005
em 0.450192 0.306650 -. 042057 -. 160915
CANi 0.653569 0.347095 0.020190 -. 089774
DD -. 154222 0.353619 -. 577603 -. 004162
ffC 0.157227 -. 193989 0.536189 0.193950

LTO -. 015034 -. 136073 0.297364 0.142243
Hm 0.043202 -. 294152 -. 025136 -. 711.535
MIS 0.246470 -. 227046 -. 345888 0.624587
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Principal Components

Prin Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 Prin9

-1.9922 -2.3895 2.0363 -0.3712 0.5114 0.9708 -1.6221 -0.2037 -0.0463
-3.2715 -0.3057 1.8893 0.4786 -0.9979 0.2483 0.5183 0.2276 -0.1765
-3.3103 0.9988 -0.6279 -1.7608 0.1865 -0.4825 0.7406 -0.2842 0.0438
-2.1007 0.7980 0.1256 -0.9697 0.0095 -0.6170 -0.3019 0.3784 0.2575
-0.7339 0.3565 -1.0603 -0.2603 1.5989 0.3596 0.1703 -0.5497 -0.1433
-0.2891 1.8124 0.1638 -0.4336 0.6744 -0.9139 0.1855 0.2869 -0.1458
-0.8213 2.9433 -1.3666 1.5825 -0.1079 1.4962 -0.5911 0.2141 -0.0662
1.1664 2.0852 2.7955 1.6588 -0.1656 0.2823 0.6430 -0.0472 0.2296
1.2004 1.1260 0.7926 -0.1461 1.1637 -0.1801 -0.0217 -0.4229 0.1156
1.6276 1.7110 0.5532 -0.0809 1.1612 -0.6564 -0.2241 0.0315 -0.1499
0.8120 0.9924 -0.2626 -0.8954 -2.2387 0.2230 0.0807 -0.3162 -0.3766
0.3277 0.4219 -1.1702 0.5479 -0.6906 -0.1506 -0.2759 0.0131 0.0740
0.2947 -0.1869 -0.5513 -0.5825 -0.9442 -0.6819 -0.2847 0.2458 0.2994
0.6495 -1.1305 -0.1604 -0.6273 -0.2941 0.2842 0.2159 -0.1501 0.4522
0.4321 -1.1067 -0.1511 0.2025 -0.4394 -0.9449 -0.1986 0.1239 -0.2003

-0.9748 -1.5878 -0.8891 0.9276 0.7828 0.1156 0.6595 0.2587 -0.0740
2.0133 -0.4843 -0.2652 -0.8159 1.0687 -0.0644 -0.5693 0.5370 -0.1227
1.1050 -2.8643 0.1715 0.0100 0,6198 0.8922 1.2724 0.2026 -0.0976
2.4985 0.2432 -0.1616 -1.7237 -0.7355 1.7607 0.1062 0.0618 0.0496
0.7158 -1.4152 0.1056 0.7919 -0.8465 -1.1293 -0.2099 -0.1694 -0.0794
1.6373 -1.0722 0.0959 0.7871 -0.2520 -1.0694 -0.1341 -0.2798 0.0034

-0.9864 -0.9457 -2.0629 1.6806 -0.0645 0.2573 -0.1591 -0.1581 0.1537
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Appendix G: Model Information and Residual Plots

1. B--52H MC Reduced Regression Model

The SAS System

Model: NODELI
Dependet Variable: NC

Aalysis of Variance

Sum of Nean
Source DF Squares Square F Value Prob>F

Model 3 543.11863 181.03954 9.518 0.0002
Error 27 513.57685 19.02136
C Total 30 1056.69548

Root NSE 4.36135 R-square 0.5140
Np Mean 78.04194 Adj R-sq 0.4600
C.V. 5.58847

Par meter Estizates

rQ.aw.u"V. okwNUaU I IL fL8.

Variable' DY Estimate Error Paraeter=0 Prob > ITI

INTRCEP 1 73.194520 5.77139232 12.682 0.0001
AWRT 1 4.464612 1.59906944 2.792 0.0095
6 1 -0.423698 0.13965466 -3.034 0.0053
HUN 1 0.181577 0.08679084 2.092 0.0460
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2. B-52H NMC Reduced Regression Model

The SAS System

Model: HODELl
Dependent Variable: MAC

Analysis of Variance

Sim of mean
Source DY Squares Square F Value Prob>F

Model 1 60,67876 60.67876 3.909 0.0576
Error 29 450.17801 15.52338
C Total 30 510.95677

Root KSE 3.93997 R-square 0.1188
Dep Mean 16.25434 Adj R-sq 0.0884
C.V. 24.23876

Paraeter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Paraneter=0 [rob > J TI

INTERCE 1 13.204542 1.69737027 7.779 0.0001
CAM 1 4.608148 2.33077981 1.977 0.0576
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3. B-52H MC Reduced Principal Components Regression Model

The SAS Systes

Model: NODFLl

Dependent Variable: NC

Analysis of Variance

SU of Mean
Source DF Squares Square F Value Prob)F

Model 2 445.55836 222.77918 10.207 0.0005
Error 28 611.13712 21.82633
C Total 30 1056.69548

Root NSE 4.67187 R-square 0.4217
Dep Mean 78.04194 Adj R-SQ 0.3803
C.V. 5.98635

Paraieter Estinates

Parazeter Standard T for HO:
Variable DF Estilate Error Paraseter=0 Prob > IT_

iRbtwrE 1 78.042019 0.83991i79 93.DU 0.0i 0
P1 1 -2.004460 0.46640564 -4.298 0.0002
P2 1 -0.864031 0.61983619 -1.394 0.1743
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4. B-52H NMC Reduced Principal Components Regression Model

The SAS System

Model: MODELI
Dependent Variable: NC

Analysis of variance

Su of Mean
Source DF Squares Square F Value Prob>F

Model 1 37.50612 37.50612 2.298 0.1404
Error 29 473.35065 16.32244
C Total 30 510.85677

Root KSE 4.04010 R-square 0.0734
Dep Mean 16.25484 Adj R-sq 0.0415
C.V. 24.85477

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter-O Frob > IT

IITERCEP 1 16.254795 0.72562401 22.401 0.0001
P1i 0.611399 0o0333250 1.56 0I,•4
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5. KC-135R MC Reduced Regression Model

The SAS Systex

Model: MODELI

Dependent Variable: HC

Analysis of Variance

Si of Mean
Source DF Squares Square F Value Prob>F

Model 1 116.24696 116.24696 13.784 0.0014
Error 20 168.66759 8.43338
C Total 21 284.91455

Root NSE 2.90403 R-square 0.4080
Dep Kean 88.54545 Adj R-sq 0.3784
C.V. 3.27970

Paraueter Estiiates

Paraveter Standard T for HO:
Variable DF Estimate Error Paraveter-O Prob > I TI

in-Rk"Cr i 95.A98404 i8958895 50.2a3 0.000i
DD 1 -0.833655 0.22454149 -3.713 0.0014
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6. KC-135R NMC Reduced Regression Model

The SAS Systes

Model: IODELI
Dependent Variable: NMC

Analysis of Variance

Sun of Mean
Source D Squares Square F Value Prob>F

Model 2 38.66166 19.33083 4.110 0.0329
Error 19 89.36168 4.70325
C Total 21 128.02335

Root MSE 2.16870 R-square 0.3020
Dep Mean 7.77455 Idj R-sq 0.2285
C.V. 27.89484

Parajeter Estisates

Paraister Standard T for HO:
Variable DF Estivate Error arameta--0 Prob > ITI

iriRC1, 1 8.689Z43 -1.94933065 4.478 0.0003
LTO 1 0.452047 0.18540004 .2.438 0.0248
MU 2 1 -0.087736 0.05764927 -1.522 0.1445
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7. KC-135R Reduced Principal Components Regression Model

The SAS System

Model: MODEL.
Dependent Variable: MC

Aalysis of Variance

SUR of Mean
Source DF Squares Square F Value Prob>F

Model 3 134.04821 44.68274 5.331 0.0083
Error 18 150.86634 8.38146
C Total 21 284.91455

Root HSE 2.89508 R-square 0.4705
Dep Meaz 88.54545 Adj R-sq 0.3822
C.V. 3.26959

Paraleter Estimates

Parameter Standard T for HO:
Variable DF Estivate Error Parameter-O Prob > ITI

LflEXK i~ 88504 0 .6723221 143.45b 0.0001
P1 1 0.959671 0.39077984 2.533 0.0208
P2 1 -1.285073 0.42309078 -3.037 0.0071
P4 1 -0.381462 0.64111664 -0.595 0.5593
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8. KC-135R NMC Reduced Principal Component Model

The SkS Systez

Model: MODELl
DepOendent Variable: MC

Analysis of Variance

Sm of Mean
Source DF Squares Square F Value Prob>F

Model 2 28.98284 14.49142 2.780 0.0873
Error 19 99.04050 5.21266
C Total 21 128.02335

Root MSE 2.28312 R-square 0.2264
Dep Mean 7.77455 Adj R-sq 0.1450
C.V. 29.36666

Parazeter Estimates

Paraneter Standard T for HO:
Variable DF Estizate Error Parameter=O Prob > ITI

3TH"FmE i 7.7745,47 0.48676381 15.972 0.0001
P1 1 -0.701263 0.30817815 -2.295 0.0333
P4 1 0.273760 0.50559963 0.541 0.5945
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Appendix H: Autoregression Model Results

1. B-52H Reduced Autoregression Model

The SAS System

Autoreg Procedure

Dependent Variable = NXC

Ordnary Least Squares Estimates

SSE 436.8531 DFE 27
NSE 16.17974 Root XSE 4.022405
SBC 183.724 AIC 177.9881
Reg Rsq 0.1316 Total Rsq 0.1316
Drbin-Watson 1.2057

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 23.0147738 4.%42 4.636 0.0001
am 1 -2.6058452 1.6237 -1.605 0.1202
DD 1 -0.000143304 0.123) -0.001 0.9991
H1 -0.1053709 0.0748 -1.409 0.1702

Estimates of Autocorrelations

Lag Covariance Correlation-198765432101234 567891

0 14.09204 1.0000 •*
1 5.07049% 0.359813 *

Preliminary NSE = 12.26761

fstimates of the Autoregressive Parameters

Lag Coefficient Std Error t Ratio
1 -0.35981287 0.18298116 -1.9%6393

Yule-Walker Estimates

SSE 366.8579 DFE 26
H58 14.10992 Root HSE 3.756317
SBC 181.8834 MC 174.7134
Reg Rsq 0.0769 Total Rsq 0.2708
Durbin-Watson 1.5872
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Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 20.6903653 4.4975 4.600 0.0001
ABORT 1 -1.4847696 1.6158 -0.919 0.3666
DD 1 0.0265431 0.1599 0.166 0.8694
)IHFB 1 -0.072734a 0.0609 -1.194 0.2434

127



2. B-52H Reduced Principal Components Autoregression Model

Autoreg Procedure

Dependent Variable = NC

Ordinary Lest Squares Estimates

SSE 491.523 DFE 29
HSE 16.94907 Root KSE 4.116925
SBC 180.5113 AIC 177.6434
Reg Rsq 0.0230 Total Rsq 0.0230
Durbin-Watson 0.9939

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 17.0432610 0.74037 23.020 0.0001
P1 1 0.3448568 0.41764 0.826 0.4157

Estimates of Autocorrelations

Lag Covariance Correlation-1987654 3210123 4 56789 1

0 15.85558 1.00 0000I
7.584936 0.478376 *********I

Preliminary NSE = 12.22712

Estimates of tbe Autoregressive Parameters

Lag Coefficient Std Error t Ratio
1 -0.47837647 0.16595567 -2.882556

Yule-Walker Estimates

SSE 366.2385 DnE 28
USE 13.07995 Root USE 3.616621
SHC 175.0842 AIC 170.7823
Reg Rsq 0.0593 lotal Rsq 0.2720
Durbin-Watson 1.5865

Variable DF B Value Std Error t Ratio Approx Prob

Intercept 1 16.9010817 1.2103 13.%4 0.0001
P1 1 0.7760043 0.5842 1.328 0.1948
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Appendix I: Validation Interval Results

1. B-52H MC Reduced Regression Model

Actual Predict Lower95% Upper95% Lower99% Upper99%/
MC Rate Value Predict Predict Predict Predict

79.9 79.4707 69.0115 89.9299 65.3471 90.3132
79.3 76.9770 67.1008 86.8532 63.6407 84.9375
79.5 72.2196 62.8014 81.6379 59.5017 84.9375
73.6 75.9361 66.6607 85.2115 63.4111 88.4611
64.9 80.5119 71.2503 89.7735 68.0055 93.0182
73.9 82.1038 72.7307 91.4769 69.4468 94.7607

2. B-52H MC Reduced Principal Components Regression Model

Actual Predict Lower95% Upper95% Lower99% Upper99%
MC Rate Value Predict Predict Predict Predict

79.9 74.4917 64.0902 84.8932 60.4602 88.5231
79.3 75.9737 65.5752 86.3721 61.9463 90.0000

73.6 79.1906 69.4471 88.9341 66.0468 92.3343
64.9 80.2161 70.4152 90.0169 66.9949 93.4371
73.9 80.8576 70.9665 90.7486 67.5147 94.2004

3. B-52H NMC Autoregression Model

Actual Predict Lower95% Upper95%
NMC Rate Value Predict Predict

21.7 15.6311 6.3751 24.8870
19.7 16.7491 8.0350 25.4632
13.7 16.3393 7.5436 25.1351
8.5 14.5296 6.1224 22.9368
12.0 15.6206 6.7904 24.4508
9.5 15.4539 5.7547 25.1531
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4. B-52H NMC Principal Component Autoregression Model

Actual Predict Lower95% Upper95%
NMC Rate Value Predict Predict

21.7 16.2477 7.3905 25.1048
19.7 16.8609 8.0673 25.6545
13.7 17.7205 8.8455 26.5956
8.5 13.5686 5.4270 21.7103
12.0 14.4615 5.5455 23.3776
9.5 15.9394 7.1514 24.7274

5. KC-135R MC Regression Model

Actual Predict Lower95% Upper95% Lower99% Upper99%
MC Rate Value Predict Predict Predict Predict
80.2 86.6618 80.3782 92.9454 78.0987 95.2329
87.3 87.8622 81.6565 94.0680 79.3974 96.3270
87.8 84.1108 77.4346 90.7870 75.0041 93.2174
83.6 85.8615 79.4867 92.2362 77.1660 94.5569
89.0 87.4454 81.2208 93.6700 78.9548 95.9360
89.7 89.7796 83.5471 96.0122 81.2782 98.2811

6. KC-135R MC Principal Component Regression Model

Actual Predict Lower95% Upper95% Lower99% Upper99%
MC Rate Value Predict Predict Predict Predict
80.2 90.7324 84.0920 97.3728 81.6345 99.8303
87.3 85.0644 78.1872 91.9416 75.6421 94.4867
87.8 86.9777 80.5819 93.3734 78.2149 95.7404
83.6 88.4647 81.8159 95.1135 79.1869 97.5741
89.0 88.1229 81.6007 94.6451 79.1869 97.0589
89.7 89.4033 83.1089 95.7378 80.7720 98.0747

7. KC-135R NMC Regression Model

Actual Predict Lower95% Upper95% Lower99% Upper99%
NMC Rate Value Predict Predi't Predict Predict

13.4 7.5434 2.8703 12.2165 1.1558 13.9310
5.5 8.4190 3.3287 13.5093 1.4610 15.3769
6.79 6.4072 1.6572 11.1572 -. 0855 12.8999
12.3 8.2209 3.5578 12.8840 1.8469 1435949
8.2 6.2903 1.3986 11.1820 -. 3961 12.9768
9.0 7.6548 3.0065 12.3030 1.3010 14.0085
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8. KC-135R NMC Principal Component Regression Model

Actual Predict Lower95% Upper95% Lower99% tlpper99%
NMC Rate Value Predict Predict Predict Predict

13.4 8.3107 3.3440 13.2775 1.5217 15.0997
5.5 9.4275 4.0617 14.7934 2.0930 16.7620
6.79 7.8254 2.8666 12.7841 1.0473 14.6034
12.3 7.8626 2,6389 13.0862 0.7224 15.0027
8.2 6.6230 1.6193 11.6267 -. 2165 13.4626
9.0 6.9138 1.9559 11.8716 0.1369 13.6906
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Appendix J: Results of Median Tests

1. B-52H DD

MEDIAN TEST FOR DD BY TYPE

TYPE

1 2 TOTAL

ABOVE MEDIAN i1 0 18
BELOW MEDIAN 9 9 18
TOTAL 27 9 36
TIES WITH MEDIAN 1 0 1

MfDIAN VALUE 15.300

CHI-SQUARE 12.00 DF 1 P-VALUE 0.0005

MAX. DIFF. ALLOWED BETWEEN A TIE 0.00001

CASES INCLUDED 37 MISSING CASES 0
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2. KC-135R LTO

MEDIAN TEST FOR LTO BY TYPE

TYPE

1 2 TOTAL

ABOVE MEDIAN 10 4 14
BELOW MEDIAN 9 5 14
TOTAL 19 9 28
TIES WITH MEDIAN 0 0 0

MEDIAN VALUE 3.4500

CHI-SQUARE 0.16 DF 1 P-VALUE 0.6857

MAX. DIFF. ALLOWED BETWEEN A TIE 0.00001

CASES INCLUDED 28 MISSING CASES 0
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